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FOREWORD 

 

The Self Learning Material (SLM) is written with the aim of providing simple and 

organized study content to all the learners. The SLMs are prepared on the framework of 

being mutually cohesive, internally consistent and structured as per the university’s syllabi. 

It is a humble attempt to give glimpses of the various approaches and dimensions to the 

topic of study and to kindle the learner’s interest to the subject 

 

We have tried to put together information from various sources into this book that has been 

written in an engaging style with interesting and relevant examples. It introduces you to the 

insights of subject concepts and theories and presents them in a way that is easy to 

understand and comprehend.  

 

We always believe in continuous improvement and would periodically update the content in 

the very interest of the learners. It may be added that despite enormous efforts and 

coordination, there is every possibility for some omission or inadequacy in few areas or 

topics, which would definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly enrich your learning 

and help you to advance in your career and future endeavours 
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INTRODUCTION TO BLOCK-I 
 

This block discusses about σ-algebra, its monotone classes, its 

restrictions and about Borel σ-algebra.we study about general measures, 

Point mass distributions, complete measures, restrictions and its 

uniqueness. We discusses different kinds of borel measures, outer 

measures and its constructions ,volume of intervals , lebesgue measure 

and its transformations and also about cantor set,cantor ternary set and its 

functions,different functions and arithmetic operations which we can 

perform on the measurable functions. 

In this block We will be learning about the devil’s staircase and seeing 

problems related to it.
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UNIT 1 Σ-ALGEBRAS 
 

STRUCTURE 

 

1.1 Objectives 

1.2 Introduction 

1.3 Generated σ-algebras.  

1.4 Algebras and monotone classes.  

1.5 Restriction of a σ-algebra. 

1.6 Borel σ-algebras. 

1.7 Let us sum up 

1.8 Keywords  

1.9 Questions for review  

1.10 Suggested Readings and references  

1.11 Answers to check your progress  

 

1.1 OBJECTIVES 

 

In this unit we are going to learn about σ-algebra, its monotone classes, 

its restrictions and about Borel σ-algebra. 

 

 

1.2 INTRODUCTION 
 

In mathematical analysis and in probability theory, a σ-algebra (also σ-

field) on a set X is a collection Σ of subsets of X that includes X itself, is 

closed under complement, and is closed under countable unions. ... Also, 

in probability, σ-algebras are pivotal in the definition of conditional 

expectation. 
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Definition 1.1Let X be a non-empty set and Σ a collection of subsets of 

X. We call Σ a σ-algebra of subsets of X if it is non-empty, closed under 

complements and closed under countable unions. This means: 

(i) there exists at least one A ⊆ X so that A ∈  Σ, 

(ii) if A ∈  Σ, then Ac ∈  Σ, where Ac = X \ A, and (iii) if An ∈  Σ for all n ∈  N, 

then . 

The pair (X,Σ) of a non-empty set X and a σ-algebra Σ of subsets of X 

is called a measurable space. 

Proposition 1.1 Every σ-algebra of subsets of X contains at least the sets 

∅  and X, it is closed under finite unions, under countable intersections, 

under finite intersections and under set-theoretic differences. 

Proof: Let Σ be any σ-algebra of subsets of X. 

(a) Take any A ∈  Σ and consider the sets A1 = A and An = Ac for all n ≥ 2. 

Then Σ and also ∅  = Xc ∈  Σ. 

(b) Let A1,...,AN ∈  Σ. Consider An = AN for all n > N and get that 

N 

(c) Let An ∈  Σ for all n. Then  

(d) Let A1,...,AN ∈  Σ. Using the result of (b), we get that  

N 

(e) Finally, let A,B ∈  Σ. Using the result of (d), we get that A\B = A∩Bc ∈  Σ. 

Here are some simple examples. 

Examples 

1. The collection {∅ ,X} is a σ-algebra of subsets of X. 

2. If E ⊆ X is non-empty and different from X, then the collection 

{∅ ,E,Ec,X} is a σ-algebra of subsets of X. 

3.P(X), the collection of all subsets of X, is a σ-algebra of subsets of X. 

3. Let X be uncountable. The {A ⊆ X |A is countable or Ac is 

countable} is a σ-algebra of subsets of X. Firstly, ∅  is countable and, 

hence, the collection is non-empty. If A is in the collection, then, 

considering cases, we see that Ac is also in the collection. Finally, let An 

be in the collection for all n ∈  N. If all An’s are countable, then  is 

also countable. If at least one of the ’s, say , is countable, then 
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(  is also countable. In any case,  belongs to the 

collection. 

The following result is useful. 

Proposition 1.2 Let Σ be a σ-algebra of subsets of X and consider a finite 

sequence  or an infinite sequence {An} in Σ. Then there exists a 

finite sequence  or, respectively, an infinite sequence {Bn} in Σ 

with the properties: 

(i) Bn ⊆ An for all n = 1,...,N or, respectively, all n ∈  N. 

 or, respectively, . 

(iii) the Bn’s are pairwise disjoint. 

Proof: Trivial, by taking B1 = A1 and Bk = Ak \ (A1 ∪  ··· ∪  Ak−1) for all k = 

2,...,N or, respectively, all k = 2,3,.... 

 

1.3 GENERATED Σ-ALGEBRAS. 
 

Proposition 1.3 The intersection of any σ-algebras of subsets of the same 

X is a σ-algebra of subsets of X. 

Proof: Let {Σi}i∈ I be any collection of σ-algebras of subsets of X, indexed 

by an arbitrary non-empty set I of indices, and consider the intersection Σ 

= ∩i∈ IΣi. Since ∅  ∈  Σi for all i ∈  I, we get ∅  ∈  Σ and, hence, Σ is non-

empty. 

Let A ∈  Σ. Then A ∈  Σi for all i ∈  I and, since all Σi’s are σ-algebras, 

Ac ∈  Σi for all i ∈  I. Therefore Ac ∈  Σ. 

Let An ∈  Σ for all n ∈  N. Then An ∈  Σi for all i ∈  I and all n ∈  N and, 

since all Σi’s are σ-algebras, we get  for all i ∈  I. Thus, 

 

Definition 1.2 Let X be a non-empty set and E be an arbitrary collection 

of subsets of X. The intersection of all σ-algebras of subsets of X which 

include E is called the σ-algebra generated by E and it is denoted by 

Σ(E). Namely 

Σ(E) = ∩{Σ|Σ is a σ-algebra of subsets of X and E ⊆ Σ}. 
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Note that there is at least one σ-algebra of subsets of X which includes E 

and this is P(X). Note also that the term σ-algebra used in the name of 

Σ(E) is justified by its definition and by Proposition 1.3. 

Proposition 1.4 Let E be any collection of subsets of the non-empty X. 

Then Σ(E) is the smallest σ-algebra of subsets of X which includes E. 

Namely, if Σ is any σ-algebra of subsets of X such that E ⊆ Σ, then Σ(E) 

⊆ Σ. 

Proof: If Σ is any σ-algebra of subsets of X such that E ⊆ Σ, then Σ is one 

of the σ-algebras whose intersection is denoted Σ(E). Therefore Σ(E) ⊆ 

Σ. 

Looking back at two of the examples of σ-algebras, we easily get the 

following examples. 

Examples. 

1. Let E ⊆ X and E be non-empty and different from X and consider 

E = {E}. Then Σ(E) = {∅ ,E,Ec,X}. To see this just observe that 

{∅ ,E,Ec,X} is a σ-algebra of subsets of X which contains E and that there 

can be no smaller σ-algebra of subsets of X containing E, since such a σ-

algebra must necessarily contain ∅ ,X and Ec besides E. 

2. Let X be an uncountable set and consider E = {A ⊆ X |A is 

countable}. Then Σ(E) = {A ⊆ X|A is countable or Ac is countable}. The 

argument is the same as before. {A ⊆ X|A is countable or Ac is countable} 

is a σ-algebra of subsets of X which contains all countable subsets of X 

and there is no smaller σ-algebra of subsets of X containing all countable 

subsets of X, since any such σ-algebra must contain all the complements 

of countable subsets of X. 

 

1.4  ALGEBRAS AND MONOTONE 

CLASSES. 
 

Definition 1.3 Let X be non-empty and A a collection of subsets of X. We 

call A an algebra of subsets of X if it is non-empty, closed under 

complements and closed under unions. This means: 

(i) there exists at least one A ⊆ X so that A ∈  A, 
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(ii) if A ∈  A, then Ac ∈  A and (iii) if A,B ∈  A, then A ∪  B ∈  A. 

Proposition 1.5 Every algebra of subsets of X contains at least the sets 

∅  and X, it is closed under finite unions, under finite intersections and 

under set-theoretic differences. 

Proof: Let A be any algebra of subsets of X. 

(a) Take any A ∈  A and consider the sets A and Ac. Then X = A ∪  Ac 

∈  A and then ∅  = Xc ∈  A. 

(b) It is trivial to prove by induction that for any n ∈  N and any 

A1,...,An ∈  A it follows A1 ∪  ··· ∪  An ∈  A. 

(c) By the result of (b), if A1,...,An ∈  A, then . 

(d) If A,B ∈  A, using the result of (c), we get that A \ B = A ∩ Bc ∈  

A. 

Examples. 

1. Every σ-algebra is also an algebra. 

2. If X is an infinite set then the collection {A ⊆ X |A is finite or Ac is 

finite} is an algebra of subsets of X. 

If (An) is a sequence of subsets of a set X and An ⊆ An+1 for all n, we say 

that the sequence is increasing. In this case, if , we write 

An ↑ A. 

If An+1 ⊆ An for all n, we say that the sequence (An) is decreasing and, if 

also , we write 

An ↓ A. 

 

1.5 RESTRICTION OF A Σ-ALGEBRAS. 
 

Proposition 1.8 Let Σ be a σ-algebra of subsets of X and Y ⊆ X be 

nonempty. If we denote 

ΣeY = {A ∩ Y |A ∈  Σ}, 

then ΣeY is a σ-algebra of subsets of Y . 

In case Y ∈  Σ, we have ΣeY = {A ⊆ Y |A ∈  Σ}. 

Proof: Since ∅  ∈  Σ, we have that ∅  = ∅  ∩ Y ∈  ΣeY . 

If B ∈  ΣeY , then B = A ∩ Y for some A ∈  Σ. Since X \ A ∈  Σ, we get 

that Y \ B = (X \ A) ∩ Y ∈  ΣeY . 
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If B1,B2,... ∈  ΣeY , then, for each k, Bk = Ak ∩ Y for some Ak ∈  Σ. Since 

Σ, we find that . 

Now let Y ∈  Σ. If B ∈  ΣeY , then B = A ∩ Y for some A ∈  Σ and, 

hence, B ⊆ Y and B ∈  Σ. Therefore B ∈  {C ⊆ Y |C ∈  Σ}. Conversely, if 

B ∈  {C ⊆ Y |C ∈  Σ}, then B ⊆ Y and B ∈  Σ. We set A = B and, thus, B = 

A ∩ Y and A ∈  Σ. Therefore B ∈  ΣeY . 

Definition 1.6 Let Σ be a σ-algebra of subsets of X and let Y ⊆ X be 

nonempty. The σ-algebra ΣeY , defined in Proposition 1.8, is called the 

restriction of Σ on Y . 

In general, if E is any collection of subsets of X and Y ⊆ X, we denote 

EeY = {A ∩ Y |A ∈  E} 

and call EeY the restriction of E on Y . 

Theorem 1.2 Let E be a collection of subsets of X and Y ⊆ X be non-

empty. 

Then 

Σ(EeY ) = Σ(E)eY, 

where Σ(EeY ) is the σ-algebra of subsets of Y generated by EeY . 

Proof: If B ∈  EeY , then B = A ∩ Y for some A ∈  E ⊆ Σ(E) and, thus, 

B ∈  Σ(E)eY . Hence, EeY ⊆ Σ(E)eY and, since, by Proposition 1.8, 

Σ(E)eY is a σ-algebra of subsets of Y , Proposition 1.4 implies Σ(EeY ) ⊆ 

Σ(E)eY . Now, define the collection 

Σ = {A ⊆ X |A ∩ Y ∈  Σ(EeY )}. 

We have that ∅  ∈  Σ, because ∅  ∩ Y = ∅  ∈  Σ(EeY ). 

If A ∈  Σ, then A∩Y ∈  Σ(EeY ). Therefore, X\A ∈  Σ, because (X\A)∩Y 

= Y \ (A ∩ Y ) ∈  Σ(EeY ). 

If A1,A2,... ∈  Σ, then A1 ∩ Y,A2 ∩ Y,... ∈  Σ(EeY ). This implies that 

) and, thus, We conclude 

that Σ is a σ-algebra of subsets of X. 

If A ∈  E, then A∩Y ∈  EeY ⊆ Σ(EeY ) and, hence, A ∈  Σ. Therefore, E 

⊆ Σ and, by Proposition 1.4, Σ(E) ⊆ Σ. Now, for an arbitrary B ∈  Σ(E)eY 

, we have that B = A ∩ Y for some A ∈  Σ(E) ⊆ Σ and, thus, B ∈  Σ(EeY ). 

This implies that Σ(E)eY ⊆ Σ(EeY ). 
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1.6 BOREL Σ-ALGEBRAS. 
 

Definition 1.7 Let X be a topological space and T the topology of X, i.e. 

the collection of all open subsets of X. The σ-algebra of subsets of X 

which is generated by T , namely the smallest σ-algebra of subsets of X 

containing all open subsets of X, is called the Borel σ-algebra of X and 

we denote it BX: BX = Σ(T ), T the topology of X. 

The elements of BX are called Borel sets in X and BX is also called the 

σ-algebra of Borel sets in X. 

By definition, all open subsets of X are Borel sets in X and, since BX is 

a σ-algebra, all closed subsets of X (which are the complements of open 

subsets) are also Borel sets in X. A subset of X is called a Gδ-set if it is a 

countable intersection of open subsets of X. Also, a subset of X is called 

an Fσ-set if it is a countable union of closed subsets of X. It is obvious 

that all Gδ-sets and all Fσ-sets are Borel sets in X. 

Proposition 1.9 If X is a topological space and F is the collection of all 

closed subsets of X, then BX = Σ(F). 

Proof: Every closed set is contained in Σ(T ). This is true because Σ(T ) 

contains all open sets and hence, being a σ-algebra, contains all closed 

sets. Therefore, F ⊆ Σ(T ). Since Σ(T ) is a σ-algebra, Proposition 1.4 

implies Σ(F) ⊆ Σ(T ). 

Symmetrically, every open set is contained in Σ(F). This is because 

Σ(F) contains all closed sets and hence, being a σ-algebra, contains all 

open sets (the complements of closed sets). Therefore, T ⊆ Σ(F). Since 

Σ(F) is a σ-algebra, Proposition 1.4 implies Σ(T ) ⊆ Σ(F). Therefore, Σ(F) 

= Σ(T ) = BX. 

If X is a topological space with the topology T and if Y ⊆ X, then, as 

is wellknown (and easy to prove), the collection T eY = {U ∩Y |U ∈  T } 

is a topology of Y which is called the relative topology or the subspace 

topology of Y . 

Theorem 1.3 Let X be a topological space and let the non-empty Y ⊆ X 

have the subspace topology. Then 

BY = BXeY. 
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Proof: If T is the topology of X, then T eY is the subspace topology of Y . 

Theorem 1.2 implies that BY = Σ(T eY ) = Σ(T )eY = BXeY . 

Thus, the Borel sets in the subset Y of X (with the subspace topology 

of Y ) are just the intersections with Y of the Borel sets in X. 

Examples of topological spaces are all metric spaces of which the 

most familiar is the euclidean space X = Rn with the usual euclidean 

metric or even any subset X of Rn with the restriction on X of the 

euclidean metric. Because of the importance of Rn we shall pay particular 

attention on BRn. 

 

Lemma 1.1 All n-dimensional intervals are Borel sets in Rn. 

Proof: For any j = 1,...,n, a half-space of the form {x = (x1,...,xn)|xj < bj} 

or of the form {x = (x1,...,xn)|xj ≤ bj} is a Borel set in Rn, since it is an 

open set in the first case and a closed set in the second case. Similarly, a 

half-space of the form {x = (x1,...,xn)|aj < xj} or of the form {x = 

(x1,...,xn)|aj ≤ xj} is a Borel set in Rn. Now, every interval S is an 

intersection of 2n of these half-spaces and, therefore, it is also a Borel set 

in Rn. 

Proposition 1.10 If E is the collection of all closed or of all open or of 

all open-closed or of all closed-open or of all intervals in Rn, then BRn = 

Σ(E). 

Proof: By Lemma 1.1 we have that, in all cases, E ⊆ BRn. Proposition 

1.4 implies that Σ(E) ⊆ BRn. 

To show the opposite inclusion consider any open subset U of Rn. For 

every x ∈  U find a small open ball Bx centered at x which is included in 

U. Now, considering the case of E being the collection of all closed 

intervals, take an arbitrary Qx = [a1,b1] × ··· × [an,bn] containing x, small 

enough so that it is included in Bx, and hence in U, and with all 

a1,...,an,b1,...,bn being rational numbers. Since x ∈  Qx ⊆ U for all x ∈  U, 

we have that U = ∪ x∈UQx. But the collection of all possible Qx’s is 

countable (!) and, thus, the general open subset U of Rn can be written as 

a countable union of sets in the collection E. Hence every open U 

belongs to Σ(E) and, since Σ(E) is a σ-algebra of subsets of Rn and BRn is 
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generated by the collection of all open subsets of Rn, Proposition 1.4 

implies that BRn ⊆ Σ(E). 

Of course, the proof of the last inclusion works in the same way with 

all other types of intervals. 

As we said, the intervals in Rn are cartesian products of n bounded 

intervals in R. If we allow these intervals in R to become unbounded, we 

get the so-called generalized intervals in Rn, namely all sets of the form 

I1 × ··· × In, where each Ij is any, even unbounded, interval in R.  

 

Check your progress  

1.Let A be an algebra of subsets of X. Prove that A is a σ-algebra if and 

only if it is closed under increasing countable unions. 

2. Let X be non-empty. In the next three cases find Σ(E) and M(E). (i) E = 

∅ . 

(ii) Fix E ⊆ X and let E = {F |E ⊆ F ⊆ X}. 

(iii) Let E = {F |F is a two-point subset of X}. 

3. Let E1,E2 be two collections of subsets of the non-empty X. If E1 ⊆ E2 ⊆ 

Σ(E1), prove that Σ(E1) = Σ(E2). 

4. Let Y be a non-empty subset of X. 

(i) If A is an algebra of subsets of X, prove that AeY is an algebra of 

subsets of Y . 

(ii) If M is a monotone class of subsets of X, prove that MeY is a 

monotone class of subsets of Y . 

(iii) If T is a topology of X, prove that T eY is a topology of Y . 

Let X be a topological space and Y be a non-empty Borel set in X. Prove 

that BY = {A ⊆ Y |A ∈  BX}. 

 

1.7 LET US SUM UP 
 

In this Unit we discussed the following points 

 Borel σ-algebras 

 Restriction of a σ-algebras 

 Algebras and monotone classes 
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 Generated σ-algebras. 

 

1.8 KEYWORDS  
 

Algebra-the part of mathematics in which letters and other general 

symbols are used to represent numbers and quantities in formulae and 

equations. 

Monotone class-monotone class is a class M of sets that is closed under 

countable monotoneunions and intersections, i.e. if and then. , and 

similarly in the other direction. 

 

1.9. QUESTIONS FOR REVIEW 
 

1. Let X be a non-empty set and A1,A2,... ⊆ X. We define 

, . 

Only in case liminfn→+∞ An = limsupn→+∞ An, we define 

lim An = liminf An = limsupAn. n→+∞ n→+∞ n→+∞ 

Prove the following. 

(i) limsupn→+∞ An = {x ∈  X |x ∈  An for infinitely many n}. 

(ii) liminfn→+∞ An = {x ∈  X |x ∈  An for all large enough n}. 

(iii) (liminf  and (limsupn→+∞ An)
c = 

. 

(iv) liminfn→+∞ An ⊆ limsupn→+∞ An. 

(v) If An ⊆ An+1 for all n, then lim . 

(vi) If An+1 ⊆ An for all n, then lim . 

(vii) Find an example where liminfn→+∞ An 6= limsupn→+∞ An. (viii) If 

An ⊆ Bn for all n, then limsupn→+∞ An ⊆ limsupn→+∞ Bn and liminfn→+∞ 

An ⊆ liminfn→+∞ Bn. 

(ix) If An = Bn∪Cn for all n, then limsupn→+∞ An ⊆ limsupn→+∞ Bn∪  

limsupn→+∞ Cn, liminfn→+∞ Bn ∪  liminfn→+∞ Cn ⊆ liminfn→+∞ 

An. 

 

2.Push-forward of a σ-algebra. 
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Let Σ be a σ-algebra of subsets of X and let f : X → Y . Then the 

collection 

{B ⊆ Y |f−1(B) ∈  Σ} 

is called the push-forward of Σ by f on Y . 

(i) Prove that the collection {B ⊆ Y |f−1(B) ∈  Σ} is a σ-algebra of 

subsets of Y . 

Consider also a σ-algebra Σ0 of subsets of Y and a collection E of subsets 

of Y so that Σ(E) = Σ0. 

(ii) Prove that, if f−1(B) ∈  Σ for all B ∈  E, then f−1(B) ∈  Σ for all B ∈  

Σ0. 

(iii) If X,Y are two topological spaces and f : X → Y is continuous, 

prove that f−1(B) is a Borel set in X for every Borel set B in Y . 

3.The pull-back of a σ-algebra. 

Let Σ0 be a σ-algebra of subsets of Y and let f : X → Y . Then the 

collection 

{f−1(B)|B ∈  Σ0} 

is called the pull-back of Σ0 by f on X. 

Prove that {f−1(B)|B ∈  Σ0} is a σ-algebra of subsets of X. 
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1.11 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1.please check section 1.3-1.7 for answers  

2.please check section 1.3-1.7 for answers  

3.please check section 1.3-1.7 for answers  

4.please check section 1.3-1.7 for answers  
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UNIT 2 MEASURES 
  

STRUCTURE 

 

2.1 Objectives 

2.2 Introduction 

2.3 General measures. 

2.4 Point mass Distribution 

2.5 Complete measure. 

2.6 Restriction of a measure. 

2.7 Uniqueness of measures. 

2.8 Let us sum up. 

2.9 Keywords  

2.10 Questions for review  

2.11Suggested Readings and references  

2.12 Answers to check your progress  

 

2.1 OBJECTIVES 
 

In this Unit we are going to study about general measures, Point mass 

distributions, complete measures, restrictions and its uniqueness. 

 

2.2 INTRODUCTION 
 

Let (X,Σ) be a measurable space. A function µ : Σ → [0,+∞] is called a 

measure on (X,Σ). 

The triple (X,Σ,µ) of a non-empty set X, a σ-algebra of subsets of X 

and a measure µ on Σ is called a measure space. 

 

2.3 GENERAL MEASURES. 
 

Definition 2.1 Let (X,Σ) be a measurable space. A function µ : Σ → 

[0,+∞] is called a measure on (X,Σ) if 
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(i) µ(∅ ) = 0,  for all sequences (An) of 

pairwise disjoint sets which are contained in Σ. 

The triple (X,Σ,µ) of a non-empty set X, a σ-algebra of subsets of X 

and a measure µ on Σ is called a measure space. 

For simplicity and if there is no danger of confusion, we shall say that µ 

is a measure on Σ or a measure on X. 

Note that the values of a measure are non-negative real numbers or +∞. 

Property (ii) of a measure is called σ-additivity and sometimes a 

measure is also called σ-additive measure to distinguish from a so-

called finitely additive measure µ which is defined to satisfy µ(∅ ) = 0 

and  

) for all N ∈  N and all pairwise disjoint A1,...,AN ∈  Σ. 

Proposition 2.1 Every measure is finitely additive. 

Proof: Let µ be a measure on the σ-algebra Σ. If A1,...,AN ∈  Σ are 

pairwise disjoint, we consider An = ∅  for all n > N and we 

get  

N 

Examples. 

1. The simplest measure is the zero measure which is denoted o and 

is defined by o(A) = 0 for every A ∈  Σ. 

2. Let X be an uncountable set and consider Σ = {A ⊆ X |A is 

countable or Ac is countable}. We define µ(A) = 0 if A is countable and 

µ(A) = 1 if Ac is countable. 

Then it is clear that µ(∅ ) = 0 and let A1,A2,... ∈  Σ be pairwise disjoint. 

If all of them are countable, then  is also countable and we get 

). Observe that if one of the An’s, say An0, is 

uncountable, then for all n 6= n0 we have  which is countable. 

Therefore µ(An0) = 1 and µ(An) = 0 for all n 6= n0. Since 

( ) is countable, we get  

Theorem 2.1 Let (X,Σ,µ) be a measure space. 

(i) (Monotonicity) If A,B ∈  Σ and A ⊆ B, then µ(A) ≤ µ(B). 

(ii) If A,B ∈  Σ, A ⊆ B and µ(A) < +∞, then µ(B \ A) = µ(B) − µ(A). 

(iii) (σ-subadditivity) If A1,A2,... ∈  Σ, then . 
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(iv) (Continuity from below) If A1,A2,... ∈  Σ and An ↑ A, then µ(An) ↑ µ(A). (v) 

(Continuity from above) If A1,A2,... ∈  Σ, µ(AN) < +∞ for some N and An ↓ 

A, then µ(An) ↓ µ(A). 

Proof: (i) We write B = A ∪  (B \ A). By finite additivity of µ, µ(B) = 

µ(A) + µ(B \ A) ≥ µ(A). 

(ii) From both sides of µ(B) = µ(A) + µ(B \ A) we subtract µ(A). 

(iii) Using Proposition 1.2 we find B1,B2,... ∈  Σ which are pairwise 

disjoint and satisfy Bn ⊆ An for all -

additivity and monotonicity of µ we 

get  

(iv) We write ), where all sets whose union is 

taken in the right side are pairwise disjoint. Applying σ-additivity (and 

finite additivity), 

∞

 n 

(v) We observe that AN \ An ↑ AN \ A and continuity from below 

implies µ(AN \ An) ↑ µ(AN \ A). Now, µ(AN) < +∞ implies µ(An) < +∞ for 

all n ≥ N and µ(A) < +∞. Applying (ii), we get µ(AN) − µ(An) ↑ µ(AN) − 

µ(A) and, since µ(AN) < +∞, we find µ(An) ↓ µ(A). 

Definition 2.2 Let (X,Σ,µ) be a measure space. 

(i) µ is called finite if µ(X) < +∞. 

(ii) µ is called σ-finite if there exist X1,X2,... ∈  Σ so that  

and µ(Xn) < +∞ for all n ∈  N. 

(iii) µ is called semifinite if for every E ∈  Σ with µ(E) = +∞ there is 

an F ∈  Σ so that F ⊆ E and 0 < µ(F) < +∞. 

(iv) A set E ∈  Σ is called of finite µ-measure if µ(E) < +∞. 

(v) A set E ∈  Σ is called of σ-finite µ-measure if there exist E1,E2,... 

∈  Σ so that  and µ(En) < +∞ for all n. 

For simplicity and if there is no danger of confusion, we may say that E 

is of finite measure or of σ-finite measure. 

Some observations related to the last definition are immediate. 
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1. If µ is finite then all sets in Σ are of finite measure. More 

generally, if E ∈  Σ is of finite measure, then all subsets of it in Σ are of 

finite measure. 

2. If µ is σ-finite then all sets in Σ are of σ-finite measure. More 

generally, if E ∈  Σ is of σ-finite measure, then all subsets of it in Σ are of 

σ-finite measure. 

3. The collection of sets of finite measure is closed under finite 

unions. 

4. The collection of sets of σ-finite measure is closed under 

countable unions. 

5. If µ is σ-finite, applying Proposition 1.2, we see that there exist 

pairwise disjoint X1,X2,... ∈  Σ so that  and µ(Xn) < +∞ for 

all n. 

Similarly, by taking successive unions, we see that there exist X1,X2,... ∈  

Σ so that Xn ↑ X and µ(Xn) < +∞ for all n. We shall use these two 

observations freely whenever σ-finiteness appears in the sequel. 

6. If µ is finite, then it is also σ-finite. The next result is not so 

obvious. 

Proposition 2.2 Let (X,Σ,µ) be a measure space. If µ is σ-finite, then it is 

semifinite. 

Proof: Take X1,X2,... ∈  Σ so that Xn ↑ X and µ(Xn) < +∞ for all n. Let E 

∈  Σ have µ(E) = +∞. From E ∩Xn ↑ E and continuity of µ from below, 

we get µ(E ∩ Xn) ↑ +∞. Therefore, µ(E ∩ Xn0) > 0 for some n0 and we 

observe that µ(E ∩ Xn0) ≤ µ(Xn0) < +∞. 

Definition 2.3 Let (X,Σ,µ) be a measure space. E ∈  Σ is called µ-null if 

µ(E) = 0. 

For simplicity and if there is no danger of confusion, we may say that E 

is null instead of µ-null. 

The following is trivial but basic. 

Theorem 2.2 Let (X,Σ,µ) be a measure space. 

(i) If E ∈  Σ is null, then every subset of it in Σ is also null. 

(ii) If E1,E2,... ∈  Σ are all null, then their union  is also null. 

Proof: The proof is based on the monotonicity and the σ-subadditivity of 

µ. 
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Check your progress 

1.Let (X,Σ,µ) be a measure space and Y ∈  Σ be non-empty. Prove that µY 

is the only measure on (X,Σ) with the properties: (i) µY (E) = µ(E) for all 

E ∈  Σ with E ⊆ Y , (ii) µY (E) = 0 for all E ∈  Σ with E ⊆ Y c. 

 

2.4 POINT MASS DISTRIBUTION 
 

Before introducing a particular class of measures we shall define sums of 

nonnegative terms over general sets of indices. We shall follow the 

standard practice of using both notations a(i) and ai for the values of a 

function a on a set I of indices. 

Definition 2.4 Let I be a non-empty set of indices and a : I → [0,+∞]. We 

define the sum of the values of a by 

      X nX o ai = sup ai |F non-empty finite subset of I . 

i∈ I i∈F 

If I = ∅ , we define Pi∈ I ai = 0. 

Of course, if F is a non-empty finite set, then P
i∈F ai is just equal to the 

sum 

, where F = {ai1,...,aiN} is an arbitrary enumeration of F. 

We first make sure that this definition extends a simpler situation. 

Proposition 2.3 If I is countable and I = {i1,i2,...} is an arbitrary 

enumeration of it, then  for all a : I → [0,+∞]. 

Proof: For arbitrary N we consider the finite subset F = {i1,...,iN} of I. 

Then, by the definition of Pi∈ I ai, we have . 

Since N is arbitrary, we find . 

Now for an arbitrary non-empty finite F ⊆ I we consider the indices 

of the elements of F provided by the enumeration I = {i1,i2,...} and take 

the maximal, say N, of them. This means that F ⊆ {i1,i2,...,iN}. Therefore 

  and, since F is arbitrary, we find, by the 

definition of Pi∈ I ai, that . 

Proposition 2.4 Let a : I → [0,+∞]. If P
i∈ I ai < +∞, then ai < +∞ for all i 

and the set {i ∈  I |ai > 0} is countable. 
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Proof: Let P
i∈ I ai < +∞. It is clear that ai < +∞ for all i (take F = {i}) and, 

for arbitrary n, consider the set is an arbitrary 

finite subset of In, then card(F) ≤ P
i∈F ai ≤ P

i∈ I ai. Therefore, the 

cardinality of the arbitrary finite subset of In is not larger than the number 

n P
i∈ I ai and, hence, the set In is finite. But then,  is 

countable. 

Proposition 2.5 (i) If a,b : I → [0,+∞] and ai ≤ bi for all i ∈  I, then 

P ai ≤ Pi∈ I bi. i∈ I 

(ii) If a : I → [0,+∞] and J ⊆ I, then Pi∈ J ai ≤ Pi∈ I ai. 

Proof: (i) For arbitrary finite F ⊆ I we have Pi∈F ai ≤ Pi∈F bi ≤ Pi∈ I bi. 

Taking supremum over the finite subsets of I, we find Pi∈ I ai ≤ Pi∈ I bi. 

(ii) For arbitrary finite F ⊆ J we have that F ⊆ I and hence P
i∈F ai ≤ P

i∈ I 

ai. 

Taking supremum over the finite subsets of J, we get Pi∈ J ai ≤ Pi∈ I ai. 

Proposition 2.6 Let I = ∪ k∈KJk, where K is a non-empty set of indices 

and the Jk’s are non-empty and pairwise disjoint. Then for every a : I → 

[0,+∞] we have . 

Proof: Take an arbitrary finite F ⊆ I and consider the finite sets Fk = F ∩ 

Jk. Observe that the set L = {k ∈  K |Fk 6= ∅ } is a finite subset of K. 

Then, using trivial properties of sums over finite sets of indices, we find 

P
i∈F ai = . The definitions imply 

that  

. Taking supremum over the finite subsets F 

of I we find 

Pi∈ I ai ≤ Pk∈K Pi∈ Jk ai . 

Now take an arbitrary finite L ⊆ K and arbitrary finite Fk ⊆ Jk for each 

k ∈  L. Then  is, clearly, a sum (without repetitions) over 

the finite subset ∪ k∈LFk of I. Hence . Taking 

supremum over the finite subsets Fk of Jk for each k ∈  L, one at a time, 

we get that . Finally, taking supremum over the 

finite subsets L of K, we find  and conclude the 

proof. 
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After this short investigation of the general summation notion we 

define a class of measures. 

Proposition 2.7 Let X be non-empty and consider a : X → [0,+∞]. We 

define µ : P(X) → [0,+∞] by 

 µ(E) = X ax , E ⊆ X. 

x∈E 

Then µ is a measure on (X,P(X)). 

Proof: It is obvious that µ(∅ ) = Px∈∅  ax = 0. 

If E1,E2,... are pairwise disjoint and , we apply Propositions 

2.3 and 2.6 to find  

 

Definition 2.5 The measure on (X,P(X)) defined in the statement of the 

previous proposition is called the point-mass distribution on X induced 

by the function a. The value ax is called the point-mass at x. 

Examples. 

Consider the function which puts point-mass ax = 1 at every x ∈  X. It is 

then obvious that the induced point-mass distribution is 

 E), if E is a finite ⊆ X, 

] 

 +∞, if E is an infinite ⊆ X. 

This ] is called the counting measure on X. 

Take a particular x0 ∈  X and the function which puts point-mass ax0 = 1 

at x0 and point-mass ax = 0 at all other points of X. Then the induced 

point-mass distribution is 

, . 

This δx0 is called the Dirac measure at x0 or the Dirac mass at x0. 

Of course, it is very easy to show directly, without using Proposition 

2.7, that these two examples, ] and δx0, constitute measures. 

 

Check your progress  

2.Positive linear combinations of measures. 

Let µ,µ1µ2 be measures on the measurable space (X,Σ) and κ ∈  [0,+∞). 

(i) Prove that κµ : Σ → [0,+∞], which is defined by 



                                                                                           Notes                                                                                                 

                   25 

 

 (κµ)(E) = κ · µ(E), E ∈  Σ, 

(consider 0 · (+∞) = 0) is a measure on (X,Σ). This κµ is called the 

product of µ by κ. 

(ii) Prove that µ1 + µ2 : Σ → [0,+∞], which is defined by 

(µ1 + µ2)(E) = µ1(E) + µ2(E), E ∈  Σ, is a measure on (X,Σ). This µ1 + µ2 is 

called the sum of µ1 and µ2. 

Thus, we define positive linear combinations κ1µ1 + ··· + κnµn. 

 

2.5 COMPLETE MEASURES. 
 

Theorem 2.2(i) says that a subset of a µ-null set is also µ-null, provided 

that the subset is contained in the σ-algebra on which the measure µ is 

defined. 

Definition 2.6 Let (X,Σ,µ) be a measure space. Suppose that for every E 

∈  Σ with µ(E) = 0 and every F ⊆ E it is implied that F ∈  Σ (and hence 

µ(F) = 0, also). Then µ is called complete and (X,Σ,µ) is a complete 

measure space. 

Thus, a measure µ is complete if the σ-algebra on which it is defined 

contains all subsets of µ-null sets. 

Definition 2.7 If (X,Σ1,µ1) and (X,Σ2,µ2) are two measure spaces on the 

same set X, we say that (X,Σ2,µ2) is an extension of (X,Σ1,µ1) if Σ1 ⊆ Σ2 

and µ1(E) = µ2(E) for all E ∈  Σ1. 

Theorem 2.3 Let (X,Σ,µ) be a measure space. Then there is a unique 

smallest complete extension (X,Σ,µ) of (X,Σ,µ). Namely, there is a unique 

measure space (X,Σ,µ) so that 

(i) (X,Σ,µ) is an extension of (X,Σ,µ), 

(ii) (X,Σ,µ) is complete, 

(iii) if (X,Σ,µ) is another complete extension of (X,Σ,µ), then it is an 

extension also of (X,Σ,µ). 

Proof: We shall first construct (X,Σ,µ). We define 

 

Σ = {A ∪  F |A ∈  Σ and F ⊆ E for some E ∈  Σ with µ(E) = 0}. 
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We prove that Σ is a σ-algebra. We write ∅  = ∅∪∅ , where the first ∅  

belongs 

 

to Σ and the second ∅  is a subset of ∅  ∈  Σ with µ(∅ ) = 0. Therefore ∅  

∈  Σ. 

Let B ∈  Σ. Then B = A ∪  F for A ∈  Σ and F ⊆ of some E ∈  Σ with 

µ(E) = 0. Write Bc = A1 ∪  F1, where A1 = (A ∪  E)c and F1 = E \ (A ∪  F). 

 

Then A1 ∈  Σ and F1 ⊆ E. Hence Bc ∈  Σ. 

 

Let B1,B2,... ∈  Σ. Then for every n, Bn = An ∪  Fn for An ∈  Σ and Fn ⊆ 

of some En ∈  Σ with µ(En) = 0. Now ), 

where 

 Σ and  Σ with ) = 0. Therefore 

 

We now construct µ. For every B ∈  Σ we write B = A ∪  F for A ∈  Σ 

and F ⊆ of some E ∈  Σ with µ(E) = 0 and define 

µ(B) = µ(A). 

To prove that µ(B) is well defined we consider that we may also have 

B = A0 ∪F0 for A0 ∈  Σ and F0 ⊆ of some E0 ∈  Σ with µ(E0) = 0 and we 

must prove that µ(A) = µ(A0). Since A ⊆ B ⊆ A0 ∪  E0, we have µ(A) ≤ 

µ(A0) + µ(E0) = µ(A0) and, symmetrically, µ(A0) ≤ µ(A). 

To prove that µ is a measure on (X,Σ) let ∅  = ∅∪∅  as above and get 

µ(∅ ) = µ(∅ ) = 0. Let also B1,B2,... ∈  Σ be pairwise disjoint. Then Bn = An 

∪  Fn for An ∈  Σ and Fn ⊆ En ∈  Σ with µ(En) = 0. Observe that the An’s 

are pairwise 

disjoint. Then ) and  

) = 0. Therefore  

We now prove that µ is complete. Let B ∈  Σ with µ(B) = 0 and let B0 

⊆ B. Write B = A ∪  F for A ∈  Σ and F ⊆ E ∈  Σ with µ(E) = 0 and 

observe that µ(A) = µ(B) = 0. Then write B0 = A0 ∪  F0, where A0 = ∅  ∈  Σ 
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and where E0 = A ∪  E ∈  Σ with µ(E0) ≤ µ(A) + µ(E) = 0. 

Hence 

To prove that (X,Σ,µ) is an extension of (X,Σ,µ) we take any A ∈  Σ and 

 

write A = A ∪  ∅ , where ∅  ⊆ ∅  ∈  Σ with µ(∅ ) = 0. This implies that A 

∈  Σ and µ(A) = µ(A). 

Now suppose that (X,Σ,µ) is another complete extension of (X,Σ,µ). 

Take any B ∈  Σ and thus B = A ∪  F for A ∈  Σ and F ⊆ E ∈  Σ with µ(E) 

= 0. 

But then A,E ∈  Σ and µ(E) = µ(E) = 0. Since µ is complete, we get that 

also 

F ∈  Σ and hence B = A ∪  F ∈  Σ. 

Moreover, µ(A) ≤ µ(B) ≤ µ(A) + µ(F) = µ(A), which implies µ(B) = 

µ(A) = µ(A) = µ(B). 

It only remains to prove the uniqueness of a smallest complete 

extension of (X,Σ,µ). This is obvious, since two smallest complete 

extensions of (X,Σ,µ) must both be extensions of each other and, hence, 

identical. 

Definition 2.8 If (X,Σ,µ) is a measure space, then its smallest complete 

extension is called the completion of (X,Σ,µ). 

2.6 RESTRICTION OF A MEASURE. 

Proposition 2.8 Let (X,Σ,µ) be a measure space and let Y ∈  Σ. If we 

define µY : Σ → [0,+∞] by 

 µY (A) = µ(A ∩ Y ), A ∈  Σ, 

then µY is a measure on (X,Σ) with the properties that µY (A) = µ(A) for 

every A ∈  Σ, A ⊆ Y , and that µY (A) = 0 for every A ∈  Σ, A ∩ Y = ∅ . 

Proof: We have µY (∅ ) = µ(∅  ∩ Y ) = µ(∅ ) = 0. If A1,A2,... ∈  Σ are pairwise 

disjoint,  

 

Therefore, µY is a measure on (X,Σ) and its two properties are trivial to 

prove. 
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Definition 2.9 Let (X,Σ,µ) be a measure space and let Y ∈  Σ. The 

measure µY on (X,Σ) of Proposition 2.8 is called the Y -restriction of µ. 

There is a second kind of restriction of a measure. To define it we 

recall that, if Y ∈  Σ, the restriction ΣeY of the σ-algebra Σ of subsets of X 

on the non-empty Y ⊆ X is ΣeY = {A ⊆ Y |A ∈  Σ}. 

Proposition 2.9 Let (X,Σ,µ) be a measure space and let Y ∈  Σ be non-

empty. We consider ΣeY = {A ⊆ Y |A ∈  Σ} and define µeY : ΣeY → 

[0,+∞] by 

 (µeY )(A) = µ(A), A ∈  ΣeY. 

Then µeY is a measure on (Y,ΣeY ). 

Proof: Obvious. 

Definition 2.10 Let (X,Σ,µ) be a measure space and let Y ∈  Σ be non-

empty. The measure µeY on (Y,ΣeY ) of Proposition 2.9 is called the 

restriction of µ on ΣeY . 

Informally speaking, we may describe the relation between the two 

restrictions of µ as follows. The restriction µY assigns value 0 to all sets 

in Σ which are included in the complement of Y while the restriction µeY 

simply ignores all those sets. Both restrictions µY and µeY assign the 

same values (the same to the values that µ assigns) to all sets in Σ which 

are included in Y . 

Check your progress  

 

3 Let X be non-empty and consider a finite A ⊆ X. If a : X → [0,+∞] 

satisfies ax = 0 for all x /∈  A, prove that the point-mass distribution µ on 

X induced by a can be written as a positive linear combination of Dirac 

measures: 

µ = κ1δx1 + ··· + κkδxk. 

Let X be infinite and define for all E ⊆ X 

if E is finite, µ 

 +∞, if E is infinite. 

Prove that µ is a finitely additive measure on (X,P(X)) which is not a 

measure. 



                                                                                           Notes                                                                                                 

                   29 

 

2.7 UNIQUENESS OF MEASURES. 

 

The next result is very useful when we want to prove that two measures 

are equal on a σ-algebra Σ. It says that it is enough to prove that they are 

equal on an algebra which generates Σ, provided that an extra assumption 

of σ-finiteness of the two measures on the algebra is satisfied. 

Theorem 2.4 Let A be an algebra of subsets of X and let µ,ν be two 

measures on (X,Σ(A)). Suppose there exist A1,A2,... ∈  A with An ↑ X and 

µ(Ak),ν(Ak) < +∞ for all k. 

If µ,ν are equal on A, then they are equal also on Σ(A). 

Proof: (a) Suppose that µ(X),ν(X) < +∞. 

We define the collection M = {E ∈  Σ(A)|µ(E) = ν(E)}. It is easy to 

see that M is a monotone class. Indeed, let E1,E2,... ∈  M with En ↑ E. By 

continuity of measures from below, we get µ(E) = limn→+∞ µ(En) = 

limn→+∞ ν(En) = ν(E) and thus E ∈  M. We do exactly the same when 

En ↓ E, using the continuity of measures from above and the extra 

assumption µ(X),ν(X) < +∞. 

Since M is a monotone class including A, Proposition 1.7 implies that 

M(A) ⊆ M. Now, Theorem 1.1 implies that Σ(A) ⊆ M and, thus, µ(E) = 

ν(E) for all E ∈  Σ(A). 

(b) The general case. 

For each k, we consider the Ak-restrictions of µ,ν. Namely, 

 µAk(E) = µ(E ∩ Ak), νAk(E) = ν(E ∩ Ak) 

for all E ∈  Σ(A). All µAk and νAk are finite measures on (X,Σ), because 

µAk(X) = µ(Ak) < +∞ and νAk(X) = ν(Ak) < +∞. We, clearly, have that 

µAk,νAk are equal on A and, by the result of (a), they are equal also on 

Σ(A). 

For every E ∈  Σ(A), using the E ∩ Ak ↑ E and the continuity of 

measures from below, we can write µ(E) = limk→+∞ µ(E ∩ Ak) = limk→+∞ 

µAk(E) = limk→+∞ νAk(E) = limk→+∞ ν(E ∩ Ak) = ν(E). 

Thus, µ,ν are equal on Σ(A). 
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2.8 LET US SUM UP 
 

In this unit we discussed the following  

 General measure  

 Uniqueness of measures 

 Restriction of measure  

 Point mass distribution  

 Complete measures  

 

2.9 KEYWORDS 
 

Meausre-  In mathematics, a measure is a generalisation of the concepts 

as length, area and volume. Informally, measures may be regarded as 

"mass distributions". More precisely, a measure is a function that assigns 

a number to certain subsets of a given set. This number is said to be the 

measure of the set. 

Distribution-Algebraic distribution means to multiply each of the terms 

within the parentheses by another term that is outside the parentheses.  

 

2.10 QUESTIONS FOR REVIEW 
 

1.Let (X,Σ,µ) be a measure space and E ∈  Σ be of σ-finite measure. If 

{Di}i∈ I is a collection of pairwise disjoint sets in Σ, prove that the set {i 

∈  I |µ(E ∩ Di) > 0} is countable. 

3. Let X be uncountable and define for all E ⊆ X 

if E is countable, µ 

 +∞, if E is uncountable. 

Prove that µ is a measure on (X,P(X)) which is not semifinite. 

2.Let (X,Σ,µ) be a complete measure space. If A ∈  Σ, B ⊆ X and µ(A4B) 

= 0, prove that B ∈  Σ and µ(B) = µ(A). 

3.Let µ be a finitely additive measure on the measurable space (X,Σ). 
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(i) Prove that µ is a measure if and only if it is continuous from 

below. (ii) If µ(X) < +∞, prove that µ is a measure if and only if it is 

continuous from above. 

 

2.11 SUGGESTED READING AND 

REFERENCES 
 

Fundamentals of Real Analysis, S K. Berberian, Springer. 

An introduction to measure theory Terence Tao 

Measure Theory Authors: Bogachev, Vladimir I 

Chovanec Ferdinand. Cantor sets. Sci. Military J. 2010 

Christopher Shaver. An exploration of the cantor set. Rose-Hulman 

Undergraduate Mathematics Journal. 

Dauben Joseph Warren, Corinthians I. Georg cantor: The battle for 

transfinite set theory. American Mathematical Society. 

 Su Francis E, et al. Devil’s staircase. Math Fun Facts. 

http://www.math.hmc.edu/funfacts, http://www.math.hmc.edu/funfacts 

Amir D. Aczel, A Strange Wilderness the Lives of the Great 

Mathematicians, Sterling Publishing Co. 2011.  

Robert Dimartino and Wilfredo O. Urbina, Excursions on Cantor-Like 

Sets, https://arxiv.org/pdf/1411.7110.pdf 

Julian F. Fleron, A Note on the History of the Cantor Set and Cantor 

Function, Mathematics Magazine, Vol. 67, No. 2 (Apr., 1994), pp. 136 - 

140. 

Evelyn Lamb, A Few of My Favorite Spaces: Fat Cantor Sets, Scientific 

American,  

2.12 ANSWER TO CHECK YOUR 

PROGRESS  
 

1. Please check the session 2.3 (Answer to QUESTION 1) 

2. Please check the session 2.4(Answer to QUESTION 2) 

3. Please check the session 2.6(Answer to QUESTION 2) 

 

http://www.math.hmc.edu/funfacts
https://arxiv.org/pdf/1411.7110.pdf
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UNIT 3 OUTER MEASURES 
 

STRUCTURE 

 

3.1 Objectives 

3.2 Introduction 

3.3 Outer measures. 

3.4 Construction of outer measures. 

3.5 Let us sum up 

3.6 Keywords 

3.7 Questions for review  

3.8 suggested reading and references  

3.9 Answers to check your progress  

 

3.1 OBJECTIVES 
 

In this chapter we are going to learn about outer measures and its 

constructions and solve problems related to it. 

 

3.2 INTRODUCTION 
 

An outer measure on X is defined for all subsets of X, it is monotone and 

σ-subadditive. An outer measure is also finitely subadditive, because for 

every A1,...,AN ⊆ X we set An = ∅  for all n > N and get  

N 

 

3.3  OUTER MEASURES. 
 

Definition 3.1 Let X be a non-empty set. A function µ∗  : P(X) → [0,+∞] 

is called outer measure on X if (i) µ∗ (∅ ) = 0, 

(ii) µ∗ (A) ≤ µ∗ (B) if A ⊆ B ⊆ X,  for all 

sequences (An) of subsets of X. 
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Thus, an outer measure on X is defined for all subsets of X, it is 

monotone and σ-subadditive. An outer measure is also finitely 

subadditive, because for every A1,...,AN ⊆ X we set An = ∅  for all n > N 

and get  

N 

We shall see now how a measure is constructed from an outer measure. 

Definition 3.2 Let µ∗  be an outer measure on the non-empty set X. We 

say that the set A ⊆ X is µ∗ -measurable if 

µ∗ (E ∩ A) + µ∗ (E ∩ Ac) = µ∗ (E) 

for all E ⊆ X. 

We denote Σµ∗  the collection of all µ∗ -measurable subsets of X. 

Thus, a set is µ∗ -measurable if and only if it decomposes every subset of 

X into two disjoint pieces whose outer measures add to give the outer 

measure of the subset. 

Observe that E = (E ∩ A) ∪  (E ∩ Ac) and, by the subadditivity of µ∗ , 

we have µ∗ (E) ≤ µ∗ (E ∩A)+µ∗ (E ∩Ac). Therefore, in order to check the 

validity of the equality in the definition, it is enough to check the 

inequality 

µ∗ (E ∩ A) + µ∗ (E ∩ Ac) ≤ µ∗ (E). 

Furthermore, it is enough to check this last inequality in the case µ∗ (E) < 

+∞. 

 

3.4  CONSTRUCTION OF OUTER 

MEASURES. 
 

Theorem 3.2 Let C be a collection of subsets of X, containing at least the 

∅ , and τ : C → [0,+∞] be an arbitrary function with τ(∅ ) = 0. We define 

+∞ µ∗ (E) = inf nXτ(Cj)|C1,C2,... ∈  C so that  

j=1 

     for all E ⊆ X, where we agree that inf ∅  = +∞. Then, µ∗  is an outer 

measure on X. 

It should be clear that, if there is at least one countable covering of E 

with 
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elements of C, then the set so that  

is non-empty. If there is no countable covering of E with elements of C, 

then this set is empty and we take µ∗ (E) = inf ∅  = +∞. 

Proof: For ∅  the covering ∅  ⊆ ∅  ∪  ∅  ∪  ··· implies µ∗ (∅ ) ≤ τ(∅ ) + 

τ(∅ ) + ··· = 0 and, hence, µ∗ (∅ ) = 0. 

Now, let A ⊆ B ⊆ X. If there is no countable covering of B by 

elements of C, then µ∗ (B) = +∞ and the inequality µ∗ (A) ≤ µ∗ (B) is 

obviously true. Otherwise, we take an arbitrary covering  with 

C1,... ∈  C. Then we also have  and, by the definition of 

µ∗ (A), we get µ∗ (A) ≤ 

). Taking the infimum of the right side, we find µ∗ (A) ≤ µ∗ (B). 

Finally, let’s prove ) for all A1,A2,... ⊆ X. 

If the right side is = +∞, the inequality is clear. Therefore we assume 

that the right side is < +∞ and, hence, that µ∗ (An) < +∞ for all n. By 

the definition of each µ∗ (An), for every  > 0 there exist Cn,1,Cn,2,... ∈  C 

so that  and . 

Then  and, using an arbitrary enumeration of 

N × N and Proposition 2.3, we get by the definition of ) that 

). Proposition 2.6 implies  

. Since  is 

arbitrary, we conclude that  

 

Check your progress  

1. Let µ∗  be an outer measure on X and Y ⊆ X. Define µ∗ Y (E) = µ∗ (E∩Y ) 

for all E ⊆ X and prove that µ∗ Y is an outer measure on X and that Y is 

µ∗ Y -measurable. 

2. Let  be outer measures on X and κ ∈  [0,+∞). Prove that 

 and max  are outer measures on X, where these are 

defined by the formulas 

(κµ∗ )(E) = κ · µ∗ (E), (consider 0 · 

(+∞) = 0) and 
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for all E ⊆ X. 

Let X be a non-empty set and consider µ∗ (∅ ) = 0 and µ∗ (E) = 1 if ∅  6= 

E ⊆ X. Prove that µ∗  is an outer measure on X and find all the µ∗ -

measurable subsets of X. 

 

3.5 LET US SUM UP 
 

In this unit we discussed the following ter measures  

 Construction of outer measures  

 

3.6 KEYWORDS  
 

measures-  measure on a set is a systematic way to assign a number to 

each suitable subset of that set, intuitively interpreted as its size. In this 

sense, a measure is a generalization of the concepts of length, area, and 

volume. 

 

Set - set is a well-defined collection of distinct objects, considered as an 

object in its own right.  

 

3.7 QUESTIONS FOR REVIEW  
 

Let µ∗  be an outer measure on X and Y ⊆ X. Define µ∗ Y (E) = µ∗ (E∩Y ) 

for all E ⊆ X and prove that µ∗ Y is an outer measure on X and that Y is 

µ∗ Y -measurable. 

Let  be outer measures on X and κ ∈  [0,+∞). Prove that 

 and max  are outer measures on X, where these are 

defined by the formulas 

(κµ∗ )(E) = κ · µ∗ (E), (consider 0 · 

(+∞) = 0) and 

 

for all E ⊆ X. 

Let X be a non-empty set and consider µ∗ (∅ ) = 0 and µ∗ (E) = 1 if ∅  6= 

E ⊆ X. Prove that µ∗  is an outer measure on X and find all the µ∗ -

measurable subsets of X. 
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For every E ⊆ N define card(E∩{1,2,...,n}). Is κ an 

outer measure on N? 

Let ( ) be a sequence of outer measures on X. Let for 

all E ⊆ X and prove that µ∗  is an outer measure on X. 

 

3.8 SUGGESTED READINGS AND 

REFERENCES  
 

Fundamentals of Real Analysis, S K. Berberian, Springer. 

An introduction to measure theory Terence Tao 

Measure Theory Authors: Bogachev, Vladimir I 

Chovanec Ferdinand. Cantor sets. Sci. Military J. 2010 

Christopher Shaver. An exploration of the cantor set. Rose-Hulman 

Undergraduate Mathematics Journal. 

Dauben Joseph Warren, Corinthians I. Georg cantor: The battle for 

transfinite set theory. American Mathematical Society. 

 Su Francis E, et al. Devil’s staircase. Math Fun Facts. 

http://www.math.hmc.edu/funfacts, http://www.math.hmc.edu/funfacts 

Amir D. Aczel, A Strange Wilderness the Lives of the Great 

Mathematicians, Sterling Publishing Co. 2011.  

Robert Dimartino and Wilfredo O. Urbina, Excursions on Cantor-Like 

Sets, https://arxiv.org/pdf/1411.7110.pdf 

Julian F. Fleron, A Note on the History of the Cantor Set and Cantor 

Function, Mathematics Magazine, Vol. 67, No. 2 (Apr., 1994), pp. 136 - 

140. 

Evelyn Lamb, A Few of My Favorite Spaces: Fat Cantor Sets, Scientific 

American, https://blogs.scientificamerican.com/roots-of-unity/a-few-of-

my-favorite-spacesfat-cantor-sets/.  

 

3.9 ANSWERS TO CHECK YOUR 

PROGRESS  
 

1.please  check section 3.3-3.3.4 

http://www.math.hmc.edu/funfacts
https://arxiv.org/pdf/1411.7110.pdf
https://blogs.scientificamerican.com/roots-of-unity/a-few-of-my-favorite-spacesfat-cantor-sets/
https://blogs.scientificamerican.com/roots-of-unity/a-few-of-my-favorite-spacesfat-cantor-sets/
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2.please  check section 3.3-3.3.4 

3.please  check section 3.3-3.3.4
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UNIT 4 LEBESGUE MEASURE ON RN 
 

STRUCTURE 

 

4.1 Introduction 

4.2 Objectives 

4.3 Volume of intervals. 

4.4 Lebesgue measure in Rn.  

4.5 Lebesgue measure and simple transformations 

4.6 Cantor set 

4.7 A non-Lebesgue set in R 

4.8 Let us sum up  

4.9 Keywords  

4.10 Questions for review  

4.11 Suggested readings and references  

4.12 Answers to  check your progress  

 

4.1 OBJECTIVES 
 

In this chapter we are going to learn about volume of intervals , lebesgue 

measure and its transformations and also about cantor sets. 

4.2 INTRODUCTION 
 

Ln is called the σ-algebra of Lebesgue sets in Rn,  is called the (n-

dimensional) Lebesgue outer measure on Rn and (iipai) mn is called the 

(n-dimensional) Lebesgue measure on Rn. 

Our aim now is to study properties of Lebesgue sets in Rn and 

especially their relation with the Borel sets or even more special sets in 

Rn, like open sets or closed sets or unions of intervals. 

 

4.3 VOLUME OF INTERVALS  
 

We consider the function voln(S) defined for intervals S in Rn, which is 

just the product of the lengths of the edges of S: the so-called (n-



                                                                                           Notes                                                                                                 

                   39 

 

dimensional) volume of S. In this section we shall investigate some 

properties of the volume of intervals. 

Lemma 4.1 Let P = (a1,b1] × ··· × (an,bn] and, for each k = 1,...,n, let 

. If we set  

(cn(i
n−1),c(

n
in)] for 1 ≤ i1 ≤ m1,...,1 ≤ in ≤ mn, then 

 voln(P) = X voln(Pi1,...,in). 

1≤i1≤m1,...,1≤in≤mn 

Proof: For the second equality in the following calculation we use the 

distributive property of multiplication of sums: 

X 

voln(Pi1,...,in) 

1≤i1≤m1,...,1≤in≤mn 

= X (c(1i1) − c(1i1−1))···(c(nin) − c(nin−1)) 

1≤i1≤m1,...,1≤in≤mn 

 m1 mn 

= X(c(1i1) − c(1i1−1))··· X(c(nin) − c(nin−1)) 

 i1=1 in=1 

= (b1 − a1)···(bn − an) = voln(P). 

Referring to the situation described by Lemma 4.1 we shall use the 

expression: the intervals Pi1,...,in result from P by subdivision of its edges. 

Lemma 4.2 Let P,P1,...,Pl be open-closed intervals and P1,...,Pl be 

pairwise disjoint. If P = P1 ∪  ··· ∪  Pl, then voln(P) = voln(P1) + ··· + 

voln(Pl). 

Proof: Let P = (a1,b1]×···×(an,bn] and ] for 

every j = 1,...,l. 

For every k = 1,...,n we set 

, 

so that . This simply means that we 

rename the numbers  in increasing order and so that 

there are no repetitions. Of course, the smallest of these numbers is ak 

and the largest is bk, otherwise the P1,...,Pl would not cover P. 

It is obvious that 
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every interval ( ] is the union of some successive among the 

intervals 

 

We now set 

 

for 1 ≤ i1 ≤ m1,...,1 ≤ in ≤ mn. 

It is clear that the Pi1,...,in’s result from P by subdivision of its edges. It 

is also almost clear that 

the intervals among the Pi1,...,in which belong to a Pj result from it by 

subdivision of its edges (this is due to i). 

every Pi1,...,in is included in exactly one from P1,...,Pl (because the P1,...,Pl 

are disjoint and cover P). 

We now calculate, using Lemma 4.1 for the first and third equality 

and grouping together the intervals Pi1,...,in which are included in the same 

Pj for the second equality: 

 voln(P) = X voln(Pi1,...,in) 

1≤i1≤m1,...,1≤in≤mn 

l 

 = X X voln(Pi1,...,in) 

j=1 Pi1,...,in⊆Pj 

l 

= Xvoln(Pj). 

j=1 

Lemma 4.3 Let P,P1,...,Pl be open-closed intervals and P1,...,Pl be 

pairwise disjoint. If P1 ∪  ··· ∪  Pl ⊆ P, then voln(P1) + ··· + voln(Pl) ≤ 

voln(P). 

Proof: We know from Proposition 1.11 that 

for some pairwise disjoint open-closed 

intervals . Then P = P1 ∪···∪   and Lemma 4.2 

now implies that voln(P) = voln(P1) + ··· + 

vol  

Lemma 4.4 Let P,P1,...,Pl be open-closed intervals. If P ⊆ P1 ∪  ··· ∪  Pl, 

then voln(P) ≤ voln(P1) + ··· + voln(Pl). 
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Proof: We first write where are open-closed 

intervals included in P. We then 

write . 

Each of these l pairwise disjoint sets can, by Proposition 1.11, be written 

as a finite union of pairwise disjoint open-closed intervals:  and 

 

for 2 ≤ j ≤ l. 

Lemma 4.2 for the equality and Lemma 4.3 for the two inequalities 

imply 

 l mj 

voln(P) = vol  

  l 

 ≤ vol . 

 j=2 j=1 

Lemma 4.5 Let Q be a closed interval and R1,...,Rl be open intervals so 

that Q ⊆ R1 ∪  ··· ∪  Rl. Then voln(Q) ≤ voln(R1) + ··· + voln(Rl). 

Proof: Let P and Pj be the open-closed intervals with the same edges as 

Q and, respectively, Rj. Then P ⊆ Q ⊆ R1 ∪  ··· ∪  Rl ⊆ P1 ∪  ··· ∪  Pl and 

by Lemma 4.4, voln(Q) = voln(P) ≤ voln(P1)+···+voln(Pl) = 

voln(R1)+···+voln(Rl). 

 

4.4 LEBESGUE MEASURE IN RN. 
 

Consider the collection C of all open intervals in Rn and the τ : C → 

[0,+∞] defined by τ(R) = voln(R) = (b1 − a1)···(bn − an) 

for every R = (a1,b1) × ··· × (an,bn) ∈  C. If we define 

+∞ m∗
n(E) = inf nXvoln(Rj)|R1,R2,... ∈  C so that  

j=1 

for all E ⊆ Rn, then Theorem 3.2 implies that  is an outer measure on 

Rn. 
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We observe that, since R ), for every E ⊆ Rn 

there is a countable covering of E by elements of C. Now Theorem 3.1 

implies that the collection 

 

of -measurable sets is a σ-algebra of subsets of Rn and, if mn is defined 

as the restriction of , then mn is a complete measure on (X,Ln). 

Definition 4.1 (i) Ln is called the σ-algebra of Lebesgue sets in Rn,  

is called the (n-dimensional) Lebesgue outer measure on Rn and (iipai) 

mn is called the (n-dimensional) Lebesgue measure on Rn. 

Our aim now is to study properties of Lebesgue sets in Rn and 

especially their relation with the Borel sets or even more special sets in 

Rn, like open sets or closed sets or unions of intervals. 

Theorem 4.1 Every interval S in Rn is a Lebesgue set and 

mn(S) = voln(S). 

Proof: Let Q = [a1,b1] × ··· × [an,bn]. 

Since ), we get by the definition 

of  that  

). Since  > 0 is arbitrary, we find  

Now take any covering, Q ⊆ R1 ∪  R2 ∪  ··· of Q by open intervals. 

Since Q is compact, there is l so that Q ⊆ R1 ∪  ··· ∪  Rl and Lemma 4.5 

implies that vol ). Taking 

the infimum of the right side, we get vol ) and, hence, 

. 

Now take any general interval S and let a1,b1,...,an,bn be the end-points 

of its edges. Then Q0 ⊆ S ⊆ Q00, 

where ] and 

]. Hence ), 

namely (  

Since  > 0 is arbitrary, we find 

. 

Consider an open-closed interval P and an open interval R. Take the 

openclosed interval PR with the same edges as R. 

Then  
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voln(PR ∩ P) and ). Now Proposition 1.11 

implies 

 for some pairwise disjoint open-closed 

intervals 

. Hence 

vol ). 

Altogether,  

) and, by Lemma 4.2, this is = voln(PR) = voln(R). We have 

just 

proved that 

. 

Consider any open-closed interval P and any E ⊆ Rn 

with . Take, for arbitrary  > 0, a covering  

by open intervals so that . This 

implies  

 

which, by the last result, is . This implies that 

 

and P is a Lebesgue set. 

If T is any interval at least one of whose edges is a single point, then 

m∗
n(T) = voln(T) = 0 and, by Proposition 3.1, T is a Lebesgue set. Now, 

any interval S differs from the open-closed interval P, which has the 

same sides as S, by finitely many (at most 2n) T’s, and hence S is also a 

Lebesgue set. 

Theorem 4.2 Lebesgue measure is σ-finite but not finite. 

Proof: We write R  with Qk = [−k,k] × ··· × [−k,k], where 

mn(Qk) = voln(Qk) < +∞ for all k. On the other hand, for all k, mn(R
n) ≥ 

mn(Qk) = (2k)n and, hence, mn(R
n) = +∞. 

Theorem 4.3 All Borel sets in Rn are Lebesgue sets. 

Proof: Theorem 4.1 says that, if E is the collection of all intervals in Rn, 

then E ⊆ Ln. But then BRn = Σ(E) ⊆ Ln. 

Therefore all open and all closed subsets of Rn are Lebesgue sets. 

Theorem 4.4 Let E ⊆ Rn. Then 
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E ∈  Ln if and only if there is A, a countable intersection of open sets, so 

that E ⊆ A and . 

E ∈  Ln if and only if there is B, a countable union of compact sets, so 

that B ⊆ E and m∗
n(E \ B) = 0. 

Proof: (i) One direction is easy. If there is A, a countable intersection of 

open sets, so that E ⊆ A and ) = 0, then, by Proposition 3.1, A \ 

E ∈  Ln and, thus, E = A \ (A \ E) ∈  Ln. 

To prove the other direction consider, after Theorem 4.2, Y1,Y2,... ∈  

Ln so that  for all k. Define Ek = E ∩ Yk so 

that  and mn(Ek) < +∞ for all k. 

For all k and arbitrary l ∈  N find a covering  by open 

intervals so that  and set . 

Then Ek ⊆ U(k,l) and , from which 

. 

Now set . Then U(l) is open and E ⊆ U(l) and it is trivial 

to see that ), from which we get 

. 

Finally, define  to get E ⊆ A and mn(A\E) ≤ mn(U
(l)\E) < 1

l 

for all l and, thus, mn(A \ E) = 0. 

(ii) If B is a countable union of compact sets so that ) 

= 0, then, by Proposition 3.1, E \ B ∈  Ln and thus E = B ∪  (E \ B) ∈  Ln. 

Now take E ∈  Ln. Then Ec ∈  Ln and by (i) there is an A, a countable 

intersection of open sets, so that Ec ⊆ A and mn(A \ Ec) = 0. 

We set B = Ac, a countable union of closed sets, and we get mn(E \ B) 

= mn(A\Ec) = 0. Now, let , where each Fj is closed. We then 

write 

, where Fj,k = Fj ∩([−k,k]×···×[−k,k]) is a compact set. This 

proves that B is a countable union of compact sets: B = ∪ (j,k)∈N×NFj,k. 

Theorem 4.4 says that every Lebesgue set in Rn is, except from a null 

set, equal to a Borel set. 
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n 
, L n ,m n 

Theorem 4.5 (i) mn is the only measure on (Rn,BRn) with mn(P) = voln(P) 

for every open-closed interval P.  is the completion of 

. 

Proof: (i) If µ is any measure on (Rn,BRn) with µ(P) = voln(P) for all 

open-closed intervals P, then it is trivial to see that µ(P) = +∞ for any 

unbounded generalised open-closed interval P: just take any increasing 

sequence of open-closed intervals having union P. 

Therefore  

) for all pairwise disjoint open-closed 

generalised 

intervals P1,...,Pm. Therefore the measures µ and mn are equal on the 

algebra  pairwise disjoint open-closed 

generalised intervals}. By Theorem 2.4, the two measures are equal also 

on Σ(A) = BRn. 

(ii) Let (Rn,BRn,mn) be the completion of (Rn,BRn,mn). 

 By Theorem 4.3, (R ) is a complete extension of (  

 

Hence, BRn ⊆ Ln and mn(E) = mn(E) for every E ∈  BRn. 

Take any E ∈  Ln and, using Theorem 4.4, find a Borel set B so that B 

⊆ E and mn(E \ B) = 0. Using Theorem 4.4 once more, find a Borel set A 

so that (E \ B) ⊆ A and mn(A \ (E \ B)) = 0. Therefore, mn(A) = mn(A \ (E \ 

B)) + mn(E \ B) = 0. 

Hence, we can write E = B ∪L, where B ∈  BRn and L = E \B ⊆ A ∈  

BRn with mn(A) = 0. After Theorem 2.3, we see that E has the form of the 

typical 

 

element of BRn and, thus, Ln ⊆ BRn. This concludes the proof. 

Theorem 4.6 Suppose E ∈  Ln with mn(E) < +∞. For arbitrary , there 

are pairwise disjoint open intervals R1,...,Rl so 

that . 

Proof: We consider a covering  by open intervals such that 

. 

Now we consider the open-closed interval  which has the same edges as 
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Rj
0 , and then  and . 

We take m so that  and we observe the inclusions 

and ( . Thus, 

 and 

. Adding, we find 

 

Proposition 1.11 implies that for some pairwise 

disjoint open-closed intervals P1,···,Pl and, thus, 

 

We consider Rk to be the open interval with the same edges as Pk so that 

∪ lk=1Rk ⊆ ∪ lk=1Pk and 

 

This, easily, implies that 

 

 

4.5 LEBESGUE MEASURE AND SIMPLE 

TRANSFORMATIONS. 
 

Some of the simplest and most important transformations of Rn are the 

translations and the linear transformations. 

Every y ∈  Rn defines the translation τy : R
n → Rn by the formula 

τy(x) = x + y, x ∈  Rn. 

Then τy is an one-to-one transformation of Rn onto Rn and its inverse 

transformation is τ−y. For every E ⊆ Rn we define 

y + E = {y + x|x ∈  E}(= τy(E)). 

Every λ > 0 defines the dilation lλ : R
n → Rn by the formula 

lλ(x) = λx, x ∈  Rn. 

Then lλ is an one-to-one transformation of Rn onto Rn and its inverse 

transformation is l1 . For every E ⊆ Rn we define 

λ λE = {λx|x ∈  E}(= lλ(E)). 

If S is any interval in R, then any translation transforms it onto 

another interval (of the same 
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type) with the same volume. In fact, if a1,b1,...,an,bn are the end-points of 

the edges of S, then the translated y +S has y1 +a1,y1 + as end-points of its 

edges. Therefore voln(y + S) = 

(y1+b1)−(y1+a1) ··· (yn+bn)−(yn+an) = (b1−a1)···(bn−an) = voln(S). 

If we dilate the interval S with a1,b1,...,an,bn as end-points of its edges 

by the number λ > 0, then we get the interval λS with λa1,λb1,...,λan,λbn as 

end-points of its edges. Therefore, voln(λS) = (λb1 − λa1)···(λbn − λan) = 

λn(b1 − a1)···(bn − an) = λnvoln(S). 

Another transformation is r, reflection through 0, with the formula 

r(x) = −x, x ∈  Rn. 

This is one-to-one onto Rn and it is the inverse of itself. We define 

−E = {−x|x ∈  E}(= r(E)) 

for all E ⊆ Rn. If S is any interval with a1,b1,...,an,bn as end-points of its 

edges, then −S is an interval with −b1,−a1,...,−bn,−an as end-points of its 

edges and voln(−S) = (−a1 + b1)···(−an + bn) = voln(S). 

After all these, we may say that n-dimensional volume of intervals is 

invariant under translations and reflection and it is positive-

homogeneous of degree n under dilations. 

We shall see that the same are true for n-dimensional Lebesgue 

measure of Lebesgue sets in Rn. 

Theorem 4.7 (i) Ln is invariant under translations, reflection and 

dilations. That is, for all A ∈  Ln we have that y+A,−A,λA ∈  Ln for every y 

∈  Rn,λ > 0. 

(ii) mn is invariant under translations and reflection and positive-

homogeneous of degree n under dilations. That is, for all A ∈  Ln we have 

that mn(y + A) = mn(A), mn(−A) = mn(A), mn(λA) = λnmn(A) for every y ∈  

Rn,λ > 0. 

Proof: Let E ⊆ Rn and y ∈  Rn. Then for all coverings  by open 

intervals we get ). Therefore,  

). Taking the infimum of the right side, we find that 

). Now, applying this to y + E translated by −y, we get 

). Hence 
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for all E ⊆ Rn and y ∈  Rn. 

Similarly, ), which implies  

). Hence ). Applying this to −E, we also get 

) and, thus, 

 

for all E ⊆ Rn. 

Also, ), from which we get  

) and hence ). Applying to  and to λE, 

we find ), which gives 

. 

Suppose now that A ∈  Ln and E ⊆ Rn. 

We have  

y + 

A ∈  Ln. 

In the same 

way, m∗
n − 

[(−E) ∩ Ac] = m∗
n (−E) ∩ A + m∗

n (−E) ∩ Ac = mn
∗ (−E) = mn

∗ (E). 

Therefore, −A ∈  Ln. We, finally, 

have  

). Therefore, λA ∈  Ln. 

If A ∈  Ln, then  

) and  

Reflection and dilations are special cases of linear transformations of 

Rn. As is well known, a linear transformation of Rn is a function T : Rn 

→ Rn such 

that 

T(x + y) = T(x) + T(y),T(κx) = κT(x), x,y ∈  Rn,κ ∈  R, 

and every such T has a determinant, det(T) ∈  R. In particular, det(r) = 

(−1)n and det(lλ) = λn. 
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We recall that a linear transfomation T of Rn is one-to-one and onto 

Rn if and only if det(T) 6= 0. Moreover, if det(T) 6= 0, then T−1 is also a 

linear transformation of Rn and det(T−1) = (det(T))−1. Finally, if T,T1,T2 

are linear transformations of Rn and T = T1 ◦ T2, then det(T) = 

det(T1)det(T2). 

 

Theorem 4.8 Let T : Rn → Rn be a linear transformation. If A ∈  Ln, then 

T(A) ∈  Ln and mn(T(A)) = |det(T)|mn(A). 

If |det(T)| = 0 and mn(A) = +∞, we interpret the right side as 0 · (+∞) = 0. 

Proof: At first we assume that det(T) 6= 0. 

If T has the form T(x1,x2,...,xn) = (λx1,x2,...,xn) for a certain λ ∈  R \ 

{0}, then det(T) = λ and, if P = (a1,b1] × (a2,b2] × ··· × (an,bn], then T(P) 

= (λa1,λb1]×(a2,b2]×···×(an,bn] or T(P) = [λb1,λa1)×(a2,b2]×···× (an,bn], 

depending on whether λ > 0 or λ < 0. Thus T(P) is an interval and 

mn(T(P)) = |λ|mn(P) = |det(T)|mn(P). 

If T(x1,x2,...,xi−1,xi,xi+1,...,xn) = (xi,x2,...,xi−1,x1,xi+1,...,xn) for a certain i 

6= 1, then det(T) = −1 and, if P = (a1,b1] × (a2,b2] × ··· × 

(ai−1,bi−1]×(ai,bi]×(ai+1,bi+1]×···×(an,bn], then T(P) = (ai,bi]×(a2,b2]× 

···×(ai−1,bi−1]×(a1,b1]×(ai+1,bi+1]×···×(an,bn]. Thus T(P) is an interval and 

mn(T(P)) = mn(P) = |det(T)|mn(P). 

If T(x1,...,xi−1,xi,xi+1,...,xn) = (x1,...,xi−1,xi + x1,xi+1,...,xn) for a certain i 

6= 1, then det(T) = 1 and, if P = (a1,b1] × ··· × (ai−1,bi−1] × (ai,bi] × 

(ai+1,bi+1] × ··· × (an,bn], then T(P) is not an interval any more but T(P) = 

{(y1,...,yn)|yj ∈  (aj,bj] for j 6= i,yi − y1 ∈  (ai,bi]} is a Borel set and hence it 

is in Ln. We define the following three auxilliary sets: L = 

(a1,b1] × ··· × (ai−1,bi−1] × (ai + a1,bi + b1] × (ai+1,bi+1] × ··· × (an,bn], M = 

{(y1,...,yn)|yj ∈  (aj,bj] for j 6= i,ai + a1 < yi ≤ ai + y1} and N = {(y1,...,yn)|yj 

∈  (aj,bj] for j 6= i,bi + a1 < yi ≤ bi + y1}. It is easy to see that all four sets, 

T(P),L,M,N, are Borel sets and T(P) ∩ M = ∅ , L ∩ N = ∅ , T(P)∪M = 

L∪N and that N = x0 +M, where x0 = (0,...,0,bi−ai,0,...,0). Then mn(T(P)) 

+ mn(M) = mn(L) + mn(N) and mn(M) = mn(N), implying that mn(T(P)) = 

mn(L) = mn(P) = |det(T)|mn(P), because L is an interval. 

Now, let T be any linear transformation of the above three types. We 

have shown that mn(T(P)) = |det(T)|mn(P) 
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for every open-closed interval P. If R = (a1,b1) × ··· × (an,bn) it is easy to 

see, just as in the case of open-closed intervals, that T(R) is a Borel set. 

We consider ] 

and, from P2 ⊆ R ⊆ P1 we get T(P2) ⊆ T(R) ⊆ T(P1). Hence 

|det(T)|mn(P2) ≤ mn(T(R)) ≤ |det(T)|mn(P1) = |det(T)|mn(R) and, taking the 

limit as 0+, we find mn(T(R)) = |det(T)|mn(R) 

for every open interval R. 

Let, again, T be any linear transformation of one of the above three types. 

Take any E ⊆ Rn and consider an arbitrary covering  by open 

intervals. Then ) and hence  

). Taking the infimum over all coverings, we conclude 

. 

If T is any linear transformation with det(T) 6= 0, by a well-known 

result of Linear Algebra, there are linear transformations T1,...,TN, where 

each is of one of the above three types so that T = T1 ◦ ··· ◦ TN. Applying 

the last result repeatedly, we find 

for every E ⊆ Rn. 

In this inequality, use now the set T(E) in the place of E and T−1 in the 

place of T, and get  

)). Combining the two inequalities, we conclude that 

 

for every linear transformation T with det(T) 6= 0 and every E ⊆ Rn. 

E ⊆ Rn

  

). This says that T(A) ∈  Ln. 

Moreover, 

. 

If det(T) = 0, then V = T(Rn) is a linear subspace of Rn with dim(V ) ≤ 

n − 1. We shall prove that mn(V ) = 0 and, from the completeness of mn, 

we shall conclude that T(A) ⊆ V is in Ln with mn(T(A)) = 0 = 

|det(T)|mn(A) for every A ∈  Ln. 
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Let {f1,...,fm} be a base of V (with m ≤ n−1) and complete it to a base 

{f1,...,fm,fm+1,...,fn} of Rn. Take the linear transformation S : Rn → Rn 

given by 

S(x1f1 + ··· + xnfn) = (x1,...,xn). 

Then S is one-to-one and, hence, det(S) 6= 0. Moreover 

S(V ) = {(x1,...,xm,0,...,0)|x1,...,xm ∈  R}. 

We have , where Qk = [−k,k]×···×[−k,k]×{0}×···×{0}. 

Each Qk is a closed interval in Rn with mn(Qk) = 0. Hence, mn(S(V )) = 0 

and, then, mn(V ) = |det(S)|−1mn(S(V )) = 0. 

If b,b1,...,bn ∈  Rn, then the set 

M = {b + κ1b1 + ··· + κnbn |0 ≤ κ1,...,κn ≤ 1} 

is the typical closed parallelepiped in Rn. One of the vertices of M is b 

and b1,...,bn (interpreted as vectors) are the edges of M which start from 

b. For such an M we define the linear transformation T : Rn → Rn by T(x) 

= T(x1,...,xn) = x1b1 + ··· + xnbn for every x = (x1,...,xn) ∈  Rn. We also 

consider the translation τb and observe that 

, 

where Q0 = [0,1]n is the unit qube in Rn. Theorems 4.7 and 4.8 imply that 

M is a Lebesgue set and 

. 

The matrix of T with respect to the standard basis {e1,...,en} of Rn has as 

columns the vectors T(e1) = b1,...,T(en) = bn. We conclude with the rule 

that the Lebesgue measure of a closed parallelepiped is given by the 

absolute value of the determinant of the matrix having as columns the 

sides of the parallelepiped starting from one of its vertices. Of course, it 

is easy to see that the same is true for any parallelepiped. 

 

4.6 CANTOR SET. 
 

Since {x} is a degenerate interval, we see that mn({x}) = voln({x}) = 0. In 

fact, every countable subset of Rn has Lebesgue measure zero: if A = 

{x1,x2,...}, then  
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The aim of this section is to provide an uncountable set in R whose 

Lebesgue measure is zero. 

We start with the interval 

I0 = [0,1], 

then take 

next 

, 

and so on, each time dividing each of the intervals we get at the previous 

stage into three subintervals of equal length and keeping only the two 

closed subintervals on the sides. 

Therefore, we construct a decreasing sequence (In) of closed sets so 

that every In consists of 2n closed intervals all of which have the same 

length . We define 

 

and call it the Cantor set. 

C is a compact subset of [0,1] with m1(C) = 0. To see this observe that 

for every  which tends to 0 as n → +∞. 

We shall prove by contradiction that C is uncountable. Namely, 

assume that C = {x1,x2,...}. We shall describe an inductive process of 

picking one from the subintervals constituting each In. 

It is obvious that every xn belongs to In, since it belongs to C. At the 

first step choose the interval I(1) to be the subinterval of I1 which does not 

contain x1. Now, I(1) includes two subintervals of I2 and at the second step 

choose the interval I(2) to be whichever of these two subintervals of I(1) 

does not contain x2. (If both do not contain x2, just take the left one.) And 

continue inductively: if you have already chosen I(n−1) from the 

subintervals of In−1, then this includes two subintervals of In. Choose as 

I(n) whichever of these two subintervals of 

I(n−1) does not contain xn. (If both do not contain xn, just take the left one.) 

This produces a sequence (I(n)) of intervals with the following properties: 

I(n) ⊆ In for all n, 

I(n) ⊆ I(n−1) for all n, 

vol 0 and 
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xn ∈ / I(n) for all n. 

From (ii) and (iii) we conclude that the intersection of all I(n)’s contains a 

single point: 

 

for some x0. From (i) we see that x0 ∈  In for all n and thus x0 ∈  C. 

Therefore, x0 = xn for some n ∈  N. But then x0 ∈  I(n) and, by (iv), the 

same point xn does not belong to I(n). 

We get a contradiction and, hence, C is uncountable. 

 

4.7 A NON-LEBESGUE SET IN R. 
 

We consider the following equivalence relation in the set [0,1). For any 

x,y ∈  [0,1) we write x ∼ y if and only if x−y ∈  Q. That ∼ is an 

equivalence relation is easy to see: 

x ∼ x, because x − x = 0 ∈  Q. 

If x ∼ y, then x − y ∈  Q, then y − x = −(x − y) ∈  Q, then y ∼ x. (c) If x ∼  

y and y ∼ z, then x − y ∈  Q and y − z ∈  Q, then x − z = (x − y) + (y − z) 

∈  Q, then x ∼ z. 

Using the Axiom of Choice, we form a set N containing exactly one 

element from each equivalence class of ∼. This means that: 

for every x ∈  [0,1) there is exactly one x ∈  N so that x − x ∈  Q. 

Indeed, if we consider the equivalence class of x and the element x of N 

from this equivalence class, then x ∼ x and hence x − x ∈  Q. Moreover, 

if there are two x,x ∈  N so that x−x ∈  Q and x−x ∈  Q, then x ∼ x and x 

∼ x, implying that N contains two different elements from the 

equivalence class of x. 

Our aim is to prove that N is not a Lebesgue set. We form the set 

A = ∪r∈Q∩[0,1)(N + r). 

Diferent (N + r)0s are disjoint: 

       if r1,r2 ∈  Q ∩ [0,1) and r1 6= r2, then (N + r1) ∩ (N + r2) = ∅ . 

Indeed, if x ∈  (N + r1) ∩ (N + r2), then x − r1,x − r2 ∈  N. But x ∼ x − r1 

and x ∼ x−r2, implying that N contains two different (since r1 6= r2) 

elements from the equivalence class of x. 
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      A ⊆ [0,2). 

This is clear, since N ⊆ [0,1) implies N + r ⊆ [0,2) for all r ∈  Q ∩ [0,1). 

Take an arbitrary x ∈  [0,1) and, by (i), the unique x ∈  N with x − x ∈  

Q. Since −1 < x − x < 1 we consider cases: if r = x − x ∈  [0,1), then x = x 

+ r ∈  N+r ⊆ A, while if r = x−x ∈  (−1,0), then x+1 = x+(r+1) ∈  N+(r+1) 

⊆ A. Therefore, for every x ∈  [0,1) either x ∈  A or x + 1 ∈  A. It is easy 

to see that exactly one of these two cases is true. Because if x ∈  A and x 

+ 1 ∈  A, then x ∈  N + r1 and x + 1 ∈  N + r2 for some r1,r2 ∈  Q ∩ [0,1). 

Hence, x−r1,x+1−r2 ∈  N and N contains two different (since r2 −r1 6= 1) 

elements of the equivalence class of x. Thus, if we define the sets 

E1 = {x ∈  [0,1)|x ∈  A}, E2 = {x ∈  [0,1)|x + 1 ∈  A} 

then we have proved that 

      E1 ∪  E2 = [0,1), E1 ∩ E2 = ∅ . 

From (iv) we shall need only that [0,1) ⊆ E1 ∪  E2. 

We can also prove that 

      E1 ∪  (E2 + 1) = A, E1 ∩ (E2 + 1) = ∅ . 

In fact, the second is easy because E1,E2 ⊆ [0,1) and hence E2 + 1 ⊆ 

[1,2). The first is also easy. If x ∈  E1 then x ∈  A. If x ∈  E2 + 1 then x − 1 

∈  E2 and then x = (x − 1) + 1 ∈  A. Thus E1 ∪  (E2 + 1) ⊆ A. On the other 

hand, if x ∈  A ⊆ [0,2), then, either x ∈  A ∩ [0,1) implying x ∈  E1, or x ∈  

A ∩ [1,2) implying x − 1 ∈  E2 i.e. x ∈  E2 + 1. Thus A ⊆ E1 ∪  (E2 + 1). 

From (v) we shall need only that E1,E2 + 1 ⊆ A. 

Suppose N is a Lebesgue set. By (ii) and by the invariance of m1 under 

translations, we get that m1(A) = P
r∈ Q∩[0,1) m1(N + r) = P

r∈ Q∩[0,1) m1(N). 

If m1(N) > 0, then m1(A) = +∞, contradicting (iii). If m1(N) = 0, then 

m1(A) = 0, implying by (v) that m1(E1) = m1(E2 + 1) = 0, hence m1(E1) = 

m1(E2) = 0, and finally from (iv), 1 = m1([0,1)) ≤ m1(E1) + m1(E2) = 0. 

We arrive at a contradiction and N is not a Lebesgue set. 

Check your progress  

    1.If A ∈  Ln and A is bounded, prove that mn(A) < +∞. Give an example of 

an A ∈  Ln which is not bounded but has mn(A) < +∞. 

    The invariance of Lebesgue measure under isometries. 

Let T : Rn → Rn be an isometric linear transformation. This means that T 

is a linear transformation satisfying |T(x) − T(y)| = |x − y| for every x,y ∈  
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Rn or, equivalently, TT∗  = T∗ T = I, where T∗  is the adjoint of T and I is 

the identity transformation. 

2.Prove that, for every E ∈  Ln, we have mn(T(E)) = mn(E). 

    3.A parallelepiped in Rn is called degenerate if it is included in a 

hyperplane of Rn, i.e. in a set of the form b + V , where b ∈  Rn and V is a 

linear subspace of Rn with dim(V ) = n − 1. 

Prove that a parallelepiped M is degenerate if and only if mn(M) = 0. 

     State in a formal way and prove the rule 

volume = base area × height 

for parallelepipeds in Rn. 

    Regularity of Lebesgue measure. 

Suppose that A ∈  Ln. 

4.Prove that there is a decreasing sequence (Uj) of open sets in Rn so that 

A ⊆ Uj for all j and mn(Uj) → mn(A). Conclude that 

mn(A) = inf{mn(U)|U open ⊇ A}. 

 

4.8 LET US SUM UP  
 

In this unit we discussed the following  

Volume of intervals. 

Lebesgue measure in Rn.  

 Lebesgue measure and simple transformations 

Cantor set 

A non-Lebesgue set in R 

 

4.9 KEYWORDS  
 

Cantor set- Cantor set is a set of points lying on a single line segment 

that has a number of remarkable and deep properties. It was discovered 

in 1874 by Henry John Stephen Smith and introduced by German 

mathematician Georg Cantor in 1883. 

 

Lebesgue measure-In measure theory, a branch of mathematics, 

the Lebesgue measure, named after French mathematician 

Henri Lebesgue, is the standard way of assigning a measure to subsets 
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of n-dimensional Euclidean space. For n = 1, 2, or 3, it coincides with the 

standard measure of length, area, or volume. 

 

4.10 QUESTIONS FOR REVIEW  
 

Prove that there is an increasing sequence (Kj) of compact sets in Rn so 

that Kj ⊆ A for all j and mn(Kj) → mn(A). Conclude that mn(A) = 

sup{mn(K)|K compact ⊆ A}. 

The validity of (i) and (ii) for (R ) is called regularity. We shall 

study this notion in chapter 5. 

    An example of an m1-null uncountable set, dense in an interval. Let Q ∩ 

[0,1] = {x1,x2,...}. For every  > 0 we define 

. 

Prove that . 

If , prove that [0,1] is not a subset of (iii) Prove that A ⊆ [0,1] 

and m1(A) = 0. 

(iv) Prove that Q ∩ [0,1] ⊆ A and that A is uncountable. 

      Let A = Q ∩ [0,1]. If R1,...,Rm are open intervals so that , prove 

that 1 ). Discuss the contrast to  

      Prove that the Cantor set is perfect: it is closed and has no isolated point. 

     The Cantor set and ternary expansions of numbers. 

Prove that for every sequence (an) in {0,1,2} the series  converges 

to a number in [0,1]. 

Conversely, prove that for every number x in [0,1] there is a sequence 

(an) in {0,1,2} so that . Then we say that 0.a1a2 ... is a 

ternary expansion of x and that a1,a2,... are the ternary digits of this 

expansion. 

If x ∈  [0,1] is a rational , where m ≡ 1(mod3) and N ∈  N, then x has 

exactly two ternary expansions: one is of the form 0.a1 ...aN−11000... and 

the other is of the form 0.a1 ...aN−10222... . 

If x ∈  [0,1] is either irrational or rational , where m ≡ 0 or 2(mod3) and 

N ∈  N, then it has exactly one ternary expansion which is not of either 

one of the above forms. 
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Let C be the Cantor set. If x ∈  [0,1], prove that x ∈  C if and only if x has 

at least one ternary expansion containing no ternary digit 1. 

      The Cantor function. 

Let I0 = [0,1],I1,I2,... be the sets used in the construction of the Cantor set 

C. For each n ∈  N define fn : [0,1] → [0,1] as follows. If, going from left 

to right,  are the 2n − 1 subintervals of [0,1] \ In, then define 

fn(0) = 0,fn(1) = 1, define fn to be constant  for all k = 1,...,2n −1 

and to be linear in each of the subintervals of In in such a way that fn is 

continuous in [0,1]. 

Prove that  for all n ≥ 2 and all x ∈  [0,1]. This 

implies that for every x ∈  [0,1] the series 

converges to a real number. 

Define f(x) to be the sum of the series appearing in (i) and prove that 

 for all x ∈  [0,1]. Therefore, fn converges to f 

uniformly in [0,1]. 

Prove that f(0) = 0,f(1) = 1 and that f is continuous and increasing 

in [0,1]. 

Prove that for every n: f is constant  for all k = 1,...,2n−1. (v) 

Prove that, if x,y ∈  C and x < y and x,y are not end-points of the same 

complementary interval of C, then f(x) < f(y). 

This function f is called the Cantor function. 

      The difference set of a set. 

Let E ⊆ R with 0 and 0 ≤ α < 1. Prove that there is a non-empty 

open interval (a,b) so that  

Let E ⊆ R be a Lebesgue set with m1(E) > 0. Taking  in (i), prove 

that E ∩ (E + z) ∩ (a,b) 6= ∅  for all z with  

Let E ⊆ R be a Lebesgue set with m1(E) > 0. Prove that the set D(E) = 

{x−y |x,y ∈  E}, called the difference set of E, includes some open 

interval of the form (  

      Another construction of a non-Lebesgue set in R. 

For any x,y ∈  R define x ∼ y if x − y ∈  Q. Prove that ∼ is an 

equivalence relation in R. 
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Let L be a set containing exactly one element from each of the 

equivalence classes of ∼ . Prove that R = ∪ r∈Q(L + r) and that the sets L 

+ r, r ∈  Q, are pairwise disjoint. 

Prove that the difference set of L (see exercise 4.6.11) contains no 

rational number 6= 0. 

Using the result of exercise 4.6.11, prove that L is not a Lebesgue set. 

Non-Lebesgue sets are everywhere, I. 

We shall prove that every E ⊆ R with 0 includes at least one 

non-Lebesgue set. 

Consider the non-Lebesgue set N ⊆ [0,1] which was constructed in 

section 4.5 and prove that, if B ⊆ N is a Lebesgue set, then m1(B) = 0. 

In other words, if 0, then M is a non-Lebesgue set. 

(ii) Consider an arbitrary E ⊆ R with ), then 

0 ≤ α < 1, and consider an interval (a,b) so that  

(see exercise 4.6.11). Then the set N0 = (b − a)N + a is included in [a,b], 

has ) and, if M0 ⊆ N0 has 0, then M0 

is not a Lebesgue set. 

(iii) Prove that E ∩ N0 is not a Lebesgue set. 

No-Lebesgue sets are everywhere, II. 

Consider the set L from exercise 4.6.12. Then E = ∪ r∈Q(E ∩ (L + r)) and 

prove that the difference set (exercise 4.6.11) of each E ∩ (L + r) 

contains no rational number 6= 0. 

Prove that, for at least one r ∈  Q, the set E∩(L+r) is not a Lebesgue set 

(using exercise 4.6.11). 

Not all Lebesgue sets in R are Borel sets and not all continuous functions 

map Lebesgue sets onto Lebesgue sets. 

Let f : [0,1] → [0,1] be the Cantor function constructed in exercise 

4.6.10. Define g : [0,1] → [0,2] by the formula 

 g(x) = f(x) + x, x ∈  [0,1]. 

Prove that g is continuous, strictly increasing, one-to-one and onto [0,2]. 

Its inverse function g−1 : [0,2] → [0,1] is also continuous, strictly 

increasing, one-to-one and onto [0,1]. 
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Prove that the set g([0,1] \ C), where C is the Cantor set, is an open set 

with Lebesgue measure equal to 1. Therefore the set E = g(C) has 

Lebesgue measure equal to 1. 

Exercises 4.6.13 and 4.6.14 give non-Lebesgue sets M ⊆ E. Consider the 

set K = g−1(M) ⊆ C. Prove that K is a Lebesgue set. 

Using exercise 1.6.8, prove that K is not a Borel set in R. (v) g maps K 

onto M. 

More Cantor sets. 

Take an arbitrary sequence (n) so that 0 for all n. We split 

I0 = [0,1] into the three intervals [0  1] and 

form I1 as the union of the two closed intervals. Inductively, if we have 

already constructed In−1 as a union of certain closed intervals, we split 

each of these intervals into three subintervals of which the two side ones 

are closed and their proportion to the original is . The union of the 

new intervals is the In. 

We set . 

Prove that K is compact, has no isolated points and includes no open 

interval. 

Prove that K is uncountable. 

Prove that ) for all n. 

Prove that  

Taking  for all n, prove that . 

(Use that (1 − a1)···(1 − an) > 1 − (a1 + ··· + an) for all n and all a1,...,an 

∈  [0,1]). 

Prove that m1(K) > 0 if and only if . 

(Use the inequality you used for (v) and also that 1 − a ≤ e−a for all a.) 

Uniqueness of Lebesgue measure. 

Prove that mn is the only measure µ on (Rn,BRn) which is invariant under 

translations (i.e. µ(E + x) = µ(E) for all Borel sets E and all x) and which 

satisfies µ(Q0) = 1, where Q0 = [−1,1] × ··· × [−1,1]. 

Let E ⊆ R be a Lebesgue set and A be a dense subset of R. If m1(E4(E+ 

x)) = 0 for all x ∈  A, prove that m1(E) = 0 or m1(E
c) = 0. 
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Let E ⊆ R be a Lebesgue set and δ > 0. If m1(E ∩ (a,b)) ≥ δ(b − a) for all 

intervals (a,b), prove that m1(E
c) = 0. 
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4.12 ANSWERS TO CHECK YOUR 

PROGRESS  
 

1.Please check section 4.3-4.7 for answers. 

2.Please check section 4.3-4.7 for answers. 

3.Please check section 4.3-4.7 for answers. 

http://www.math.hmc.edu/funfacts
https://arxiv.org/pdf/1411.7110.pdf
https://blogs.scientificamerican.com/roots-of-unity/a-few-of-my-favorite-spacesfat-cantor-sets/
https://blogs.scientificamerican.com/roots-of-unity/a-few-of-my-favorite-spacesfat-cantor-sets/
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4.Please check section 4.3-4.7 for answers. 
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CHAPTER 5 BOREL MEASURES 
 

STRUCTURE 

 

 

5.1 Objectives 

5.2 Introduction 

5.3 Lebesgue-Stieltjes measures in R 

5.4 Borel measures 

5.5 Let us sum up 

5.6 Keywords  

5.7 Questions for review  

5.8 Suggested readings and references  

5.9 Answers to check your progress  

 

5.1 OBJECTIVES 
 

In this Chapter we are going to learn about the different kinds of borel 

measures 

 

5.2 INTRODUCTION 
 

The collection of µ∗ F-measurable sets is a σ-algebra of subsets of 

(a0,b0), which we denote by ΣF, and the restriction, denoted µF, of µ∗ F on 

ΣF is a complete measure. 

The measure µF is called the Lebesgue-Stieltjes measure induced by the 

(increasing) F : (a0,b0) → R. 

 

5.3  LEBESGUE-STIELTJES MEASURES 

IN R. 
 

Lemma 5.1 If −∞ ≤ a < b ≤ +∞ and F : (a,b) → R is increasing, then (i) 

for all x ∈  [a,b) we have F(x+) = inf{F(y)|x < y}, 

for all x ∈  (a,b] we have F(x−) = sup{F(y)|y < x}, 
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if a < x < y < z < b, then F(x−) ≤ F(x) ≤ F(x+) ≤ F(y) ≤ F(z−) ≤ 

F(z) ≤ F(z+), 

for all x ∈  [a,b) we have F(x+) = limy→x+ F(y±), (v) for all x ∈  (a,b] we have 

F(x−) = limy→x− F(y±). 

Proof: (i) Let M = inf{F(y)|x < y}. Then for every γ > M there is some t 

> x so that F(t) < γ. Hence for all y ∈  (x,t) we have M ≤ F(y) < γ. This 

says that F(x+) = M. 

Similarly, let m = sup{F(y)|y < x}. Then for every γ < m there is some t 

< x so that γ < F(t). Hence for all y ∈  (t,x) we have γ < F(y) ≤ m. This 

says that F(x−) = m. 

F(x) is an upper bound of the set {F(y)|y < x} and a lower bound of 

{F(y)|x < y}. This, by (i) and (ii), implies that F(x−) ≤ F(x) ≤ F(x+) and, 

of course, F(z−) ≤ F(z) ≤ F(z+). Also, if x < y < z, then F(y) is an 

element of both sets {F(y)|x < y} and {F(y)|y < z}. Therefore F(y) is 

between the infimum of the first, F(x+), and the supremum of the second 

set, F(z−). (iv) By the result of (i), for every γ > F(x+) there is some t > x 

so that F(x+) ≤ F(t) < γ. This, combined with (iii), implies that F(x+) ≤ 

F(y±) < γ for all y ∈  (x,t). Thus, F(x+) = limy→x+ F(y±). 

(v) By (ii), for every γ < F(x−) there is some t < x so that γ < F(t) ≤ 

F(x−). 

This, combined with (iii), implies γ < F(y±) ≤ F(x−) for all y ∈  (t,x). 

Thus, F(x−) = limy→x− F(y±). 

Consider now a0,b0 with −∞ ≤ a0 < b0 ≤ +∞ and an increasing function 

F : (a0,b0) → R and define a non-negative function τ acting on 

subintervals of (a0,b0) as follows: 

τ((a,b)) = F(b−) − F(a+), τ([a,b]) = F(b+) − 

F(a−), 

τ((a,b]) = F(b+) − F(a+), 

τ([a,b)) = F(b−) − 

F(a−). 

The mnemonic rule is: if the end-point is included in the interval, then 

approach it from the outside while, if the end-point is not included in the 

interval, then approach it from the inside of the interval. 
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We use the collection of all open subintervals of (a0,b0) and the 

function τ to define, as an application of Theorem 3.2, the following 

outer measure on 

(a0,b0): 

o 

 ) for all j , 

for every E ⊆ (a0,b0). 

Theorem 3.1 implies that the collection of µ∗ F-measurable sets is a σ-

algebra of subsets of (a0,b0), which we denote by ΣF, and the restriction, 

denoted µF, of µ∗ F on ΣF is a complete measure. 

Definition 5.1 The measure µF is called the Lebesgue-Stieltjes measure 

induced by the (increasing) F : (a0,b0) → R. 

If F(x) = x for all x ∈  R, then τ(S) = vol1(S) for all intervals S and, in 

this special case, µF coincides with the 1-dimensional Lebesgue measure 

m1 on R. Thus, the new measure is a generalization of Lebesgue measure. 

Following exactly the same procedure as with Lebesgue measure, we 

shall study the relation between the σ-algebra ΣF and the Borel sets in 

(a0,b0). 

Lemma 5.2 Let P = (a,b] ⊆ (a0,b0) and a = c(0) < c(1) < ··· < c(m) = b. If Pi 

= (c(i−1),c(i)], then τ(P) = τ(P1) + ··· + τ(Pm). 

Proof: A telescoping sum: 

 

F(b+) − F(a+) = τ((a,b]). 

Lemma 5.3 If P,P1,...,Pl are open-closed subintervals of (a0,b0), P1,...,Pl 

are pairwise disjoint and P = P1 ∪  ··· ∪  Pl, then τ(P) = τ(P1) + ··· + 

τ(Pl). 

Proof: Exactly one of P1,...,Pl has the same right end-point as P. We 

rename and call it Pl. Then exactly one of P1,...,Pl−1 has right end-point 

coinciding with the left end-point of Pl. We rename and call it Pl−1. We 

continue until the left end-point of the last remaining subinterval, which 

we shall rename P1, coincides with the left end-point of P. Then the 

result is the same as the result of Lemma 5.2. 
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Lemma 5.4 If P,P1,...,Pl are open-closed subintervals of (a0,b0), P1,...,Pl 

are pairwise disjoint and P1 ∪  ··· ∪  Pl ⊆ P, then τ(P1) + ··· + τ(Pl) ≤ 

τ(P). 

Proof: We know that  for some pairwise 

disjoint open-closed intervals . By Lemma 5.3 we get τ(P) = 

τ(P1) + ··· + 

 

Lemma 5.5 Suppose that P,P1,...,Pl are open-closed subintervals of 

(a0,b0) and P ⊆ P1 ∪  ··· ∪  Pl. Then τ(P) ≤ τ(P1) + ··· + τ(Pl). 

Proof: We write , where Pj
0 = Pj ∩P are open-closed 

intervals included in P. Then 

write . 

Each of these l pairwise disjoint sets can be written as a finite union of 

pairwise disjoint open-closed intervals:  and 

 

for 2 ≤ j ≤ l. 

Lemma 5.3 (for the equality) and Lemma 5.4 (for the two inequalities) 

imply 

. 

Lemma 5.6 Let Q be a closed interval and R1,...,Rl be open subintervals 

of (a0,b0). If Q ⊆ R1 ∪  ··· ∪  Rl, then τ(Q) ≤ τ(R1) + ··· + τ(Rl). 

Proof: Let Q = [a,b] and Rj = (aj,bj) for j = 1,...,l. We define for  

. 

We shall first prove that there is some 0 so that for all  

. 

Suppose that, for all n, the above inclusion is not true for . Hence, 

for all n there is ] so that ]. By the Bolzano-

Weierstrass theorem, there is a subsequence (xnk) converging to some x. 

Looking carefully at the various inequalities, we get x ∈  [a,b] and x /∈  
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∪ l
j=1(aj,bj). This is a contradiction and the inclusion we want to prove is 

true for some . If 

, then the inclusion is still true because the left side becomes smaller 

while the right side becomes larger. 

Now Lemma 5.5 gives for  that 

 

and, using Lemma 5.1 for the limit as 0+, 

. 

Theorem 5.1 Let F : (a0,b0) → R be increasing. Then every subinterval S 

of -measurable and 

µF(S) = τ(S). 

Proof: Let Q = [a,b] ⊆ (a0,b0). 

 Then )+) for all small 

enough  > 0 and, thus,  

For every covering  by open subintervals of (a0,b0), there is 

(by compactness) l so that Q ⊆ ∪ l
j=1Rj. Lemma 5.6 

implies  

). Hence ) and we conclude that 

 

for all closed intervals Q ⊆ (a0,b0). 

If P = (a,b] ⊆ (a0,b0), then 

for all small enough  > 0. 

Hence  

If  

Now let P = (a,b], R = (c,d) be included in (a0,b0) and take  

We write  

)+) by the previous results. The 

same inequalities, with Pc instead of P, give  

)+). Taking the sum, we find µ∗ F(R ∩ P) + µ∗ F(R ∩ Pc) 

≤ 
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Now write PR ∩Pc = P1 ∪···∪Pl for pairwise disjoint open-closed 

intervals and 

get  

) by the first results and Lemma 5.3. 

Therefore  

)+)] and, taking limit, µ∗ F(R ∩ P) + 

We proved that 

 

for all open intervals R and open-closed intervals P which are ⊆ (a0,b0). 

Now consider arbitrary E ⊆ (a0,b0) with . Take a 

covering  by open subintervals of (a0,b0) so 

that . 

By σ-subadditivity and the 

last result we find 

 . 

, 

concluding that P ∈  ΣF. 

If Q = [a,b] ⊆ (a0,b0), we take any (ak) in (a0,b0) so that ak ↑ a and, then, 

. Moreover, by the first results, 

. 

If P = (a,b] ⊆ (a0,b0), we take any (ak) in (a,b] so that ak ↓ a and we 

get that µF(P) = limk→+∞ µF([ak,b]) = limk→+∞(F(b+) − F(ak−)) = F(b+) − 

F(a+) = τ(P). 

If T = [a,b) ⊆ (a0,b0), we take any (bk) in [a,b) so that bk ↑ b and we 

get that . Moreover, µF(T) = limk→+∞ µF([a,bk]) = 

limk→+∞(F(bk+) − F(a−)) = F(b−) − F(a−) = τ(T). 

Finally, if R = (a,b) ⊆ (a0,b0), we take any (ak) and (bk) in (a,b) so that 

ak ↓ a, bk ↑ b and a1 ≤ b1. Then . Moreover, µF(R) = 

limk→+∞ µF([ak,bk]) = limk→+∞(F(bk+)−F(ak−)) = F(b−)−F(a+) = τ(R). 

Theorem 5.2 Let F : (a0,b0) → R be increasing. Then µF is σ-finite and it 

is finite if and only if F is bounded. Also, . 
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Proof: We consider any two sequences (ak) and (bk) in (a0,b0) so that ak ↓ 

a0, bk ↑ b0 and a1 ≤ b1. Then ( ] and µF([ak,bk]) = F(bk+) 

− 

F(ak−) < +∞ for all k. Hence, µF is σ-finite. 

Since µF((a0,b0)) = F(b0−) − F(a0+), if µF is finite, then −∞ < F(a0+) 

and F(b0−) < +∞. This implies that all values of F lie in the bounded 

interval [F(a0+),F(b0−)] and F is bounded. Conversely, if F is bounded, 

then the limits F(a0+),F(b0−) are finite and µF((a0,b0)) < +∞. 

It is easy to prove that the collection of all subintervals of (a0,b0) 

generates the σ-algebra of all Borel sets in (a0,b0). Indeed, let E be the 

collection of all intervals in R and F be the collection of all subintervals 

of (a0,b0). It is clear that F = Ee(a0,b0) and Theorems 1.2 and 1.3 imply 

that 

B(a0,b0) = BRe(a0,b0) = Σ(E)e(a0,b0) = Σ(F). 

Theorem 5.3 Let F : (a0,b0) → R be increasing. Then all Borel sets in 

(a0,b0) belong to ΣF. 

Proof: Theorem 5.1 implies that the collection F of all subintervals of 

(a0,b0) is included in ΣF. By the discussion of the previous paragraph, we 

conclude that B(a0,b0) = Σ(F) ⊆ ΣF. 

Theorem 5.4 Let F : (a0,b0) → R be increasing. Then for every E ⊆ 

(a0,b0) we have 

E ∈  ΣF if and only if there is A ⊆ (a0,b0), a countable intersection of open 

sets, so that E ⊆ A and µ∗ F(A \ E) = 0. 

E ∈  ΣF if and only if there B, a countable union of compact sets, so that B 

⊆ E and µ∗ F(E \ B) = 0. 

Proof: The proof is exactly the same as the proof of the similar Theorem 

4.4. Only the obvious changes have to be made: mn changes to µF and 

m∗
n to µ∗ F, Rn changes to (a0,b0), voln changes to τ and Ln changes to ΣF. 

Therefore, every set in ΣF is, except from a µF-null set, equal to a 

Borel set. 

Theorem 5.5 Let F : (a0,b0) → R be increasing. Then 
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(i) µF is the only measure on  with µF((a,b]) = F(b+)−F(a+) 

for all intervals (a,b] ⊆ (a0,b0).  is the completion of 

. 

Proof: The proof is similar to the proof of Theorem 4.5. Only the 

obvious notational modifications are needed. 

It should be observed that the measure of a set {x} consisting of a 

single point x ∈  (a0,b0) is equal to µF({x}) = F(x+) − F(x−), the jump of 

F at x. In other words, the measure of a one-point set is positive if and 

only if F is discontinuous there. Also, observe that the measure of an 

open subinterval of (a0,b0) is 0 if and only if F is constant in this interval. 

It is very common in practice to consider the increasing function F 

with the extra property of being continuous from the right. In this case 

the measure of an open-closed interval takes the simpler form 

µF((a,b]) = F(b) − F(a). 

Proposition 5.1 shows that this is not a serious restriction. 

Proposition 5.1 Given any increasing function on (a0,b0) there is another 

increasing function which is continuous from the right so that the 

LebesgueStieltjes measures induced by the two functions are equal. 

Proof: Given any increasing F : (a0,b0) → R we define F0 : (a0,b0) → R 

by the formula 

 F0(x) = F(x+), x ∈  (a0,b0) 

and it is immediate from Lemma 5.1 that F0 is increasing, continuous 

from the right, i.e. F0(x+) = F0(x) for all x, and F0(x+) = F(x+),F0(x−) = 

F(x−) for all x. Now, it is obvious that F0 and F induce the same 

Lebesgue-Stieltjes measure on (a0,b0), simply because the corresponding 

functions τ(S) (from which the construction of the measures µF0,µF starts) 

assign the same values to every interval S ⊆ (a0,b0). 

The functions F0 and F of Proposition 5.1 have the same jump at 

every x and, in particular, they have the same continuity points. 

Check your progress  

1.Supports of Lebesgue-Stieltjes measures. 
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Let F : R → R be any increasing function. Prove that the complement of 

the support (exercise 5.5.6) of the measure µF is the union of all open 

intervals on each of which F is constant. 

Let a : R → [0,+∞] induce the point-mass distribution µ on (R,P(R)). Then 

µ is a Borel measure on R. 

Prove that µ is locally finite if and only if P−R≤x≤R ax < +∞ for all R > 0. 

In particular, prove that, if µ is locally finite, then A = {x ∈  R|ax > 0} is 

countable. 

In case µ is locally finite, find an increasing, continuous from the right F 

: R → R (in terms of the function a) so that µ = µF on BR. 

Describe the sets E such that ) = 0 and find the σ-algebra ΣF of 

all -measurable sets. Is ΣF = P(R)? 

 

5.4 BOREL MEASURES. 
 

Definition 5.2 Let X be a topological space and (X,Σ,µ) be a measure 

space. The measure µ is called a Borel measure on X if BX ⊆ Σ, i.e. if all 

Borel sets in X are in Σ. 

The Borel measure µ is called locally finite if for every x ∈  X there is 

some open neighborhood Ux of x (i.e. an open set containing x) such that 

µ(Ux) < +∞. 

Observe that, for µ to be a Borel measure, it is enough to have that all 

open sets or all closed sets are in Σ. This is because BX is generated by 

the collections of all open or all closed sets and because Σ is a σ-algebra. 

Examples 

The Lebesgue measure on Rn and, more generally, the Lebesgue-Stieltjes 

measure on any generalized interval (a0,b0) (induced by any increasing 

function) are locally finite Borel measures. In fact, the content of the 

following theorem is that the only locally finite Borel measures on (a0,b0) 

are exactly the Lebesgue-Stieltjes measures. 

Lemma 5.7 Let X be a topological space and µ a Borel measure on X. If 

µ is locally finite, then µ(K) < +∞ for every compact K ⊆ X. 
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If µ is a locally finite Borel measure on Rn, then µ(M) < +∞ for every 

bounded M ⊆ Rn. 

Proof: We take for each x ∈  K an open neighborhood Ux of x so that 

µ(Ux) < 

+∞.Since K ⊆ ∪ x∈KUx and K is compact, there are x1,...,xn so that 

. Hence, . 

If M ⊆ Rn is bounded, then M is compact and µ(M) ≤ µ(M) < +∞. 

Theorem 5.6 Let −∞ ≤ a0 < b0 ≤ +∞ and c0 ∈  (a0,b0). For every locally 

finite Borel measure µ on (a0,b0) there is a unique increasing and 

continuous from the right F : (a0,b0) → R so that µ = µF on B(a0,b0) and 

F(c0) = 0. For any other increasing and continuous from the right G : 

(a0,b0) → R, it is true that µ = µG if and only if G differs from F by a 

constant. 

Proof: Define the function 

, 

0. 

By Lemma 5.7, F is real valued and it is clear, by the monotonicity of 

µ, that F is increasing. Now take any decreasing sequence (xn) so that xn 

↓ x. If c0 ≤ x, by continuity of µ from above, limn→+∞ F(xn) = limn→+∞ 

µ((c0,xn]) = µ((c0,x]) = F(x). Also, if x < c0, then xn < c0 for large n, and, 

by continuity of µ from below, limn→+∞ F(xn) = −limn→+∞ µ((xn,c0]) = 

−µ((x,c0]) = F(x). Therefore, F is continuous from the right at every x. 

If we compare µ and the induced µF at the intervals (a,b], we get 

µF((a,b]) = F(b)−F(a) = µ((a,b]), where the second equality becomes 

trivial by considering cases: a < b < c0, a < c0 ≤ b and c0 ≤ a < b. 

Theorem 5.5 implies that µF = µ 

on B(a0,b0). 

If G is increasing, continuous from the right with µG = µ(= µF) on 

B(a0,b0), then G(x) − G(c0) = µG((c0,x]) = µF((c0,x]) = F(x) − F(c0) for all x 

≥ c0 and, similarly, G(c0) − G(x) = µG((x,c0]) = µF((x,c0]) = F(c0) − F(x) 

for all x < c0. Therefore F,G differ by a constant: G−F = G(c0)−F(c0) on 

(a0,b0). Hence, if F(c0) = 0 = G(c0), then F,G are equal on (a0,b0). 
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If the locally finite Borel measure µ on (a0,b0) satisfies the µ((a0,c0]) 

< +∞, then we may make a different choice for F than the one in 

Theorem 5.6. We add the constant µ((a0,c0]) to the function of the 

theorem and get the function 

 F(x) = µ((a0,x]), x ∈  (a0,b0). 

This last function is called the cumulative distribution function of µ. 

A central notion related to Borel measures is the notion of regularity, 

and this is because of the need to replace the general Borel set (a 

somewhat obscure object) by open or closed sets. 

Let E be a Borel subset in a topological space X and µ a Borel 

measure on X. It is clear that µ(K) ≤ µ(E) ≤ µ(U) for all K compact and U 

open with 

K ⊆ E ⊆ U. Hence sup{µ(K)|K compact ⊆ E} ≤ µ(E) ≤ inf{µ(U)|U open ⊇ E}. 

Definition 5.3 Let X be a topological space and µ a Borel measure on X. 

Then µ is called regular if the following are true for every Borel set E in 

X: (i) µ(E) = inf{µ(U)|U open ⊇ E}, (ii) µ(E) = sup{µ(K)|K compact ⊆ 

E}. 

Therefore, µ is regular if the measure of every Borel set can be 

approximated from above by the measures of larger open sets and from 

below by the measures of smaller compact sets. 

Proposition 5.2 Let O be any open set in Rn. There is an increasing 

sequence (Km) of compact subsets of O so that int(Km) ↑ O and, hence, 

Km ↑ O also. 

Proof: Define the sets 

no 

 Km = x ∈  O ||x| ≤ m andfor all y /∈  O , 

where  for all x = (x1,...,xn). 

The set Km is bounded, since |x| ≤ m for all x ∈  Km. 

If (xj) is a sequence in Km converging to some x, then, from |xj| ≤ m 

for all j, we get |x| ≤ m, and, from  for all j and for all y /∈  O, 

we get  for all y /∈  O. Thus, x ∈  Km and Km is closed. 

Therefore, Km is a compact subset of O and, clearly, Km ⊆ Km+1 ⊆ O 

for all m. Hence, int(Km) ⊆ int(Km+1) for every m. 
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Now take any x ∈  O and an  > 0 such that . Consider, 

also, ). It is trivial to see that  and thus x ∈  

int(KM). Therefore, int(Km) ↑ O. Since int(Km) ⊆ Km ⊆ O, we conclude 

that Km ↑ O. 

Theorem 5.7 Let X be a topological space with the property that for 

every open set O in X there is an increasing sequence of compact subsets 

of O whose interiors cover O. 

Suppose that µ is a locally finite Borel measure on X. Then: 

For every Borel set E and every  there is an open U and a closed F so 

that F ⊆ E ⊆ U and . If also µ(E) < +∞, then F can 

be taken compact. 

For every Borel set E in X there is A, a countable intersection of open sets, 

and B, a countable union of compact sets, so that B ⊆ E ⊆ A and µ(A \ 

E) = µ(E \ B) = 0. 

µ is regular. 

Proof: (a) Suppose that µ(X) < +∞. 

Consider the collection S of all Borel sets E in X with the property 

expressed in (i), namely, that for every  > 0 there is an open U and a 

closed F so that 

F ⊆ E ⊆ U and . 

Take any open set O ⊆ X and arbitrary  > 0. If we consider U = O, then 

. By assumption there is a sequence (Km) of compact sets 

so that Km ↑ O. Therefore, O \ Km ↓ ∅  and, since µ(O \ K1) ≤ µ(X) < +∞, 

continuity from above implies that limm→+∞ µ(O \ Km) = 0. Therefore 

there is some m so that . 

Thus, all open sets belong to S. 

If 0 is arbitrary, we find an open U and a closed F so 

that F ⊆ E ⊆ U and . Then Fc is open, Uc is closed, 

and . 

This implies that Ec ∈  S. 

Now, take E1,E2,... ∈  S and . For  > 0 and each Ej take 

open Uj and closed Fj so that . 

Define  and the open  so that B ⊆ E ⊆ U. Then 
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) and ). This implies µ(U \ E) ≤ 

and, similarly, . The problem 

now 

is that B is not necessarily closed. Consider the closed sets Fj
0 = F1 ∪  ··· 

∪  Fj, so that Fj
0 ↑ B. Then E \ Fj

0 ↓ E \ B and, since 

, continuity from below 

implies ). Therefore there is some j so that . 

The inclusion  is clearly true. 

We conclude that and S is a σ-algebra. 

Since S contains all open sets, we have that BX ⊆ S and finish the 

proof of the first statement of (i) in the special case µ(X) < +∞. 

(b) Now, consider the general case, and take any Borel set E in X which 

is included in some compact set K ⊆ X. For each x ∈  K we take an open 

neighborhood Ux of x with µ(Ux) < +∞. By the compactness of K, there 

exist x1,...,xn ∈  K so that . We form the open set G = ∪n
k=1Uxk 

and have that 

 E ⊆ G, µ(G) < +∞. 

We next consider the restriction µG of µ on G, which is defined by the 

formula 

µG(A) = µ(A ∩ G) 

for all Borel sets A in X. It is clear that µG is a Borel measure on X which 

is finite, since µG(X) = µ(G) < +∞. 

By (a), for every  > 0 there is an open U and a closed F so that F ⊆ E ⊆ 

U 

. Since E ⊆ G, we get µ((G ∩ U) \ E) = 

. 

Therefore, if we consider the open set U0 = G ∩ U, we get F ⊆ E ⊆ 

U0 and and the first statement of (i) is now proved 

with no 

restriction on µ(X) but only for Borel sets in X which are included in 

compact subsets of X. 

(c) We take an increasing sequence (Km) of compact sets so that int(Km) 

↑ X. 
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For any Borel set E in X we consider the sets E1 = E ∩ K1 and Em = E ∩ 

(Km \ Km−1) for all m ≥ 2 and we have that . Since Em ⊆ Km, 

(b) implies that for each m and every  > 0 there is an open Um and a 

closed 

Fm so that Fm ⊆ Em ⊆ Um and . Now define the 

open  and the closed (why?) , so that F ⊆ E ⊆ U. 

As in the proof of (a), we easily get . 

This concludes the proof of the first statement of (i). 

Let µ(E) < +∞. Take a closed F so that F ⊆ E and , and 

consider the compact sets Km of part (c). Then the sets Fm = F ∩ Km are 

compact and Fm ↑ F. Therefore, E \ Fm ↓ E \ F and, by continuity of µ 

from above, µ(E \ Fm) → µ(E \ F). Thus there is a large enough m so that 

. This proves the second statement of (i). 

Take open Uj and closed Fj so that Fj ⊆ E ⊆ Uj and µ(Uj\E),µ(E\Fj) < 1j . 

Define  and  so that B ⊆ E ⊆ A. Now, for all j we 

have µ(A \ E) ≤ µ(Uj \ E) < 1
j and µ(E \ B) ≤ µ(E \ Fj) < 1

j . Therefore, 

µ(A \ E) = µ(E \ B) = 0. We define the compact sets Kj,m = Fj ∩ Km and 

observe that B = ∪ (j,m)∈N×NKj,m. This is the proof of (ii). 

If µ(E) = +∞, it is clear that µ(E) = inf{µ(U)|U open and E ⊆ U}. Also, 

from (ii), there is some , where all  are compact, so that 

B ⊆ E and µ(B) = µ(E) = +∞. Consider the compact sets Km = 

 which satisfy Km ↑ B. Then µ(Km) → µ(B) = µ(E) and thus 

sup{µ(K)|K compact and K ⊆ E} = µ(E). 

If µ(E) < +∞, then, from (a), for every  > 0 there is a compact K and 

an open U so that K ⊆ E ⊆ U and . This implies 

) and and, thus, the proof of (iii) is 

complete. 

Lemma 5.8 Let X be a topological space which satisfies the assumptions 

of Theorem 5.7. Let Y be an open or a closed subset of X with its 

subspace topology. Then Y also satisfies the assumptions of Theorem 5.7. 

Proof Let Y be open in X. If O is an open subset of Y , then it is also an 

open subset of X. Therefore, there is an increasing sequence (Km) of 

compact subsets of O so that intX(Km) ↑ O, where intX(Km) is the interior 
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of Km with respect to X. Since Km ⊆ Y and Y is open in X, it is clear that 

intY (Km) = intX(Km) and, thus, intY (Km) ↑ O. 

 Let Y be closed in X and take any O ⊆ Y which is open in Y . Then 

O = O0 ∩ Y for some O0 ⊆ X which is open in X and, hence, there is an 

increasing sequence ( ) of compact subsets of O0 so that int . 

We set  and have that each Km is a compact subset of O. 

Moreover, int ) for every m and, thus, intY (Km) ↑ O. 

Examples 

Proposition 5.2 implies that the euclidean space Rn satisfies the 

assumptions of Theorem 5.7. Therefore, every locally finite Borel 

measure on Rn is regular. 

A special case of this is the Lebesgue measure in Rn (see Theorem 4.4 

and 

Exercice 4.6.5). 

If Y is an open or a closed subset of Rn with the subspace topology, then 

Lemma 5.8 together with Theorem 5.7 imply that every locally finite 

Borel measure on Y is regular. 

As a special case, if Y = (a0,b0) is a generalized interval in R, then 

every locally finite Borel measure on Y is regular. Since Theorem 5.6 

says that any such measure is a Lebesgue-Stieltjes measure, this result is, 

also, easily implied by Theorem 5.4. 

 

 

Check your progress  

2.Linear combinations of regular Borel measures. 

If µ,µ1,µ2 are regular Borel measures on the topological space X and λ ∈  

[0,+∞), prove that λµ and µ1 + µ2  are regular Borel measures on X. 

Prove that every locally finite Borel measure on Rn is σ-finite. 

 

5.5 LET US SUM UP 
 

 In this unit we discussed the following  

Lebesgue-Stieltjes measures in R 
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Borel measures 

  

5.6 KEYWORDS  
 

Borel measures- 

In mathematics, specifically in measure theory, a Borel measure on a 

topological space is a measure that is defined on all open sets (and thus 

on all Borel sets). 

 

distribution function- 

The distribution function , also called the cumulative distribution 

function (CDF) or cumulative frequency function, describes the 

probability that a variate takes on a value less than or equal to a number . 

 

5.7 QUESTIONS FOR REVIEW  
 

If −∞ < x1 < x2 < ··· < xN < +∞ and 0 < λ1,...,λN < +∞, then find (and draw) 

the cumulative distribution function of . 

The Cantor measure. 

Consider the Cantor function f (exercise 4.6.10) extended to R by f(x) = 

0 for all x < 0 and f(x) = 1 for all x > 1. Then f : R → [0,1] is increasing, 

continuous and bounded. 

f is the cumulative distribution function of µf. 

Prove that µf(C) = µf(R) = 1. 

Each one of the 2n subintervals of In (look at the construction of C) has 

measure equal to . 

Let µ be a locally finite Borel measure on R such that µ((−∞,0]) < +∞. 

Prove that there is a unique f : R → R increasing and continuous from 

the right so that µ = µf and f(−∞) = 0. Which is this function? 

 

The support of a regular Borel measure. 

Let µ be a regular Borel measure on the topological space X. A point x ∈  

X is called a support point for µ if µ(Ux) > 0 for every open 

neighborhood Ux of x. The set supp(µ) = {x ∈  X |x is a support point for 

µ} 

is called the support of µ. 

https://en.wikipedia.org/wiki/Borel_measure
https://en.wikipedia.org/wiki/Borel_measure
https://en.wikipedia.org/wiki/Borel_measure
https://en.wikipedia.org/wiki/Borel_measure
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Prove that supp(µ) is a closed set in X. 

Prove that µ(K) = 0 for all compact sets K ⊆ (supp(µ))c. 

Using the regularity of µ, prove that  

Prove that (supp(µ))c is the largest open set in X which is µ-null. 

If f is the Cantor function (exercise 5.5.2), prove that the support (exercise 

5.5.6) of µf is the Cantor set C. 

 

Restrictions of regular Borel measures. 

Let µ be a σ-finite regular Borel measure on the topological space X and 

Y be a Borel subset of X. Prove that the restriction µY is a regular Borel 

measure on X. 

Continuous regular Borel measures. 

Let µ be a regular Borel measure on the topological space X so that 

µ({x}) = 0 for all x ∈  X. A measure satisfying this last property is called 

continuous. Prove that for every Borel set A in X with 0 < µ(A) < +∞ 

and every t ∈  (0,µ(A)) there is some Borel set B in X so that B ⊆ A and 

µ(B) = t. 

Let X be a separable, complete metric space and µ be a Borel measure on 

X so that µ(X) = 1. Prove that there is some B, a countable union of 

compact subsets of X, so that µ(B) = 1. 

 

5.8 SUGGESTED READINGS AND 

REFERENCES  
 

Fundamentals of Real Analysis, S K. Berberian, Springer. 

An introduction to measure theory Terence Tao 

Measure Theory Authors: Bogachev, Vladimir I 

 Chovanec Ferdinand. Cantor sets. Sci. Military J. 2010 

Christopher Shaver. An exploration of the cantor set. Rose-Hulman 

Undergraduate Mathematics Journal. 

Dauben Joseph Warren, Corinthians I. Georg cantor: The battle for 

transfinite set theory. American Mathematical Society. 

 Su Francis E, et al. Devil’s staircase. Math Fun Facts. 
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http://www.math.hmc.edu/funfacts, http://www.math.hmc.edu/funfacts 

Amir D. Aczel, A Strange Wilderness the Lives of the Great 

Mathematicians, Sterling Publishing Co. 2011.  

Robert Dimartino and Wilfredo O. Urbina, Excursions on Cantor-Like 

Sets, https://arxiv.org/pdf/1411.7110.pdf 

 Julian F. Fleron, A Note on the History of the Cantor Set and Cantor 

Function, Mathematics Magazine, Vol. 67, No. 2 (Apr., 1994), pp. 136 - 

140. 

Evelyn Lamb, A Few of My Favorite Spaces: Fat Cantor Sets, Scientific 

American, https://blogs.scientificamerican.com/roots-of-unity/a-few-of-

my-favorite-spacesfat-cantor-sets/.  

 

5.9 ANSWERS TO CHECK YOUR 

PROGRESS  
 

1.please check section 5.3 for answers . 

2.please Check section 5.4 for answers. 

http://www.math.hmc.edu/funfacts
https://arxiv.org/pdf/1411.7110.pdf
https://blogs.scientificamerican.com/roots-of-unity/a-few-of-my-favorite-spacesfat-cantor-sets/
https://blogs.scientificamerican.com/roots-of-unity/a-few-of-my-favorite-spacesfat-cantor-sets/
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CHAPTER 6 MEASURABLE 

FUNCTIONS 
 

STRUCTURE 

 

6.1 Objectives 

6.2 Introduction 

6.3 Measurability 

6.4 Restriction and gluing 

6.5 Functions with arithmetical values. 

6.6 Composition 

6.7 Sums and products 

6.8 Absolute value and signum 

6.9 Maximum and minimum. 

6.10 Truncation 

6.11 Limits 

6.12 Simple functions 

6.13 The role of null sets 

6.14 Let us sumup  

6.15 Keywords  

6.16 Questions for review  

6.17 Suggested readings and references  

6.18 Answers to check your progress  

 

6.1 OBJECTIVES 
 

In this chapter we are going to learn about the different functions and 

arithmetic operations which we can perform on the, measurable 

functions. 

 

6.2 INTRODUCTION 
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Let (X,Σ) and (Y,Σ0) measurable spaces and f : X → Y . Suppose that E is 

a collection of subsets of Y so that Σ(E) = Σ0. If f−1(E) ∈  Σ for all E ∈  E, 

then f is (Σ,Σ0)-measurable. 

 

6.3 MEASURABILITY 
 

Definition 6.1 Let (X,Σ) and (Y,Σ0) be measurable spaces and f : X → Y . 

We say that f is (Σ,Σ0)-measurable if f−1(E) ∈  Σ for all E ∈  Σ0. 

Example 

A constant function is measurable. In fact, let (X,Σ) and (Y,Σ0) be 

measurable spaces and f(x) = y0 ∈  Y for all x ∈  X. Take arbitrary E ∈  Σ0. 

If y0 ∈  E, then f−1(E) = X ∈  Σ. If y0 ∈ / E, then f−1(E) = ∅  ∈  Σ. 

Proposition 6.1 Let (X,Σ) and (Y,Σ0) measurable spaces and f : X → Y . 

Suppose that E is a collection of subsets of Y so that Σ(E) = Σ0. If f−1(E) 

∈  Σ for all E ∈  E, then f is (Σ,Σ0)-measurable. 

Proof: We consider the collection S = {E ⊆ Y |f−1(E) ∈  Σ}. 

Since f−1(∅ ) = ∅  ∈  Σ, it is clear that ∅  ∈  S. 

If E ∈  S, then f−1(Ec) = (f−1(E))c ∈  Σ and thus Ec ∈  S. 

If E1,E2,... ∈  S, then  Σ, implying that 

. 

Therefore S is a σ-algebra of subsets of Y . E is, by hypothesis, 

included in S and, thus, Σ0 = Σ(E) ⊆ S. This concludes the proof. 

Proposition 6.2 Let X,Y be topological spaces and f : X → Y be 

continuous on X. Then f is (BX,BY )-measurable. 

Proof: Let E be the collection of all open subsets of Y . Then, by 

continuity, f−1(E) is an open and, hence, Borel subset of X for all E ∈  E. 

Since Σ(E) = BY , Proposition 6.1 implies that f is (BX,BY )-measurable. 

 

6.4  RESTRICTION AND GLUING. 
 

If f : X → Y and A ⊆ X is non-empty, then the function feA : A → Y , 

defined by (feA)(x) = f(x) for all x ∈  A, is the usual restriction of f on A. 
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Recall that, if Σ is a σ-algebra of subsets of X and A ∈  Σ is non-

empty, then, by Lemma 2.1, ΣeA = {E ⊆ A|E ∈  Σ} is a σ-algebra of 

subsets of A. We call ΣeA the restriction of Σ on A. 

Proposition 6.3 Let (X,Σ), (Y,Σ0) be measurable spaces and f : X → Y . 

Let the non-empty A1,...,An ∈  Σ be pairwise disjoint and A1 ∪  ··· ∪  An = 

X. 

Then f is (Σ,Σ0)-measurable if and only if feAj is (ΣeAj,Σ
0)-measurable 

for all j = 1,...,n. 

Proof: Let f be (Σ,Σ0)-measurable. For all E ∈  Σ0 we have (feAj)
−1(E) = 

f−1(E) ∩ Aj ∈  ΣeAj because the set f−1(E) ∩ Aj belongs to Σ and is included 

in Aj. Hence feAj is (ΣeAj,Σ
0)-measurable for all j. 

Now, let feAj be (ΣeAj,Σ
0)-measurable for all j. For every E ∈  Σ0 we 

have that f−1(E) ∩ Aj = (feAj)
−1(E) ∈  ΣeAj and, hence, f−1(E) ∩ Aj ∈  Σ for 

all j. Therefore f−1(E) = (f−1(E)∩A1)∪···∪(f−1(E)∩An) ∈  Σ, implying that 

f is (Σ,Σ0)-measurable. 

In a free language: measurability of a function separately on 

complementary (measurable) pieces of the space is equivalent to 

measurability on the whole space. 

There are two operations on measurable functions that are taken care 

of by Proposition 6.3. One is the restriction of a function f : X → Y on 

some non-empty A ⊆ X and the other is the gluing of functions feAj : Aj 

→ Y to form a single f : X → Y , whenever the finitely many Aj’s are non-

empty, pairwise disjoint and cover X. The rules are: restriction of 

measurable functions on measurable sets are measurable and gluing of 

measurable functions defined on measurable subsets results to a 

measurable function. 

 

6.5 FUNCTIONS WITH ARITHMETICAL 

VALUES. 
 

Definition 6.2 Let (X,Σ) be measurable space and f : X → R or R or C 

or 
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C. We say f is Σ-measurable if it is (Σ,BR or BR  or BC or BC)-

measurable, respectively. 

In the particular case when  or , then we use 

the term Borel measurable or, respectively, Lebesgue measurable for f. 

 

If f : X → R, then it is also true that f : X → R. Thus, according to the 

definition we have given, there might be a conflict between the two 

meanings of Σ-measurability of f. But, actually, there is no such conflict. 

Suppose, for example, that f is assumed (Σ,BR)-measurable. If E ∈  BR, 

then E ∩ R ∈  BR and, thus, f−1(E) = f−1(E ∩ R) ∈  Σ. Hence f is (Σ,BR)-

measurable. Let, conversely, f be (Σ,BR)-measurable. If E ∈  BR, then E 

∈  BR  and, thus, f−1(E) ∈  Σ. Hence f is (Σ,BR)-measurable. 

The same question arises when f : X → C, because it is then also true that 

 

f : X → C. Exactly as before, we may prove that f is (Σ,BC)-measurable if 

and only if it is (Σ,BC)-measurable and there is no conflict in the 

definition. 

Proposition 6.4 Let (X,Σ) be measurable space and f : X → Rn. Let, for 

each j = 1,...,n, fj : X → R denote the j-th component function of f. 

Namely, f(x) = (f1(x),...,fn(x)) for all x ∈  X. 

Then f is (Σ,BRn)-measurable if and only if every fj is Σ-measurable. 

Proof: Let f be (Σ,BRn)-measurable. For all intervals (a,b] we have 

 

which belongs to Σ. Since the collection of all (a,b] generates BR, 

Proposition 

6.1 implies that fj is Σ-measurable. 

Now let every fj be Σ-measurable. Then 

 

which is an element of Σ. The collection of all open-closed intervals 

generates BRn and Proposition 6.1, again, implies that f is (Σ,BRn)- 

measurable. 

In a free language: measurability of a vector function is equivalent to 

measurability of all component functions. 
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The next two results give simple criteria for measurability of real or 

complex valued functions. 

Proposition 6.5 Let (X,Σ) be measurable space and f : X → R. Then f is 

Σ-measurable if and only if f−1((a,+∞)) ∈  Σ for all a ∈  R. 

Proof: Since (a,+∞) ∈  BR, one direction is trivial. 

If f−1((a,+∞)) ∈  Σ for all a ∈  R, then f−1((a,b]) = f−1((a,+∞)) \ 

f−1((b,+∞)) ∈  Σ for all (a,b]. Now the collection of all intervals (a,b] 

generates BR and Proposition 6.1 implies that f is Σ-measurable. 

Of course, in the statement of Proposition 6.5 one may replace the 

intervals (a,+∞) by the intervals [a,+∞) or (−∞,b) or (−∞,b]. 

If f : X → C, then the functions <(f),=(f) : X → R are defined by 

<(f)(x) = <(f(x)) and =(f)(x) = =(f(x)) for all x ∈  X and they are called the 

real part and the imaginary part of f, respectively. 

Proposition 6.6 Let (X,Σ) be measurable space and f : X → C. Then f is 

Σ-measurable if and only if both <(f) and =(f) are Σ-measurable. 

Proof: An immediate application of Proposition 6.4. 

The next two results investigate extended-real or extended-complex 

valued functions. 

 

Proposition 6.7 Let (X,Σ) be measurable space and f : X → R. The 

following are equivalent. 

f is Σ-measurable. 

f−1({+∞}),f−1(R) ∈  Σ and, if A = f−1(R) is non-empty, the function feA : A → 

R is ΣeA-measurable. 

f−1((a,+∞]) ∈  Σ for all a ∈  R. 

Proof: It is trivial that (i) implies (iii), since (a,+∞] ∈  BR for all a ∈  R. 

Assume (ii) and consider B = f−1({+∞}) ∈  Σ and C = f−1({−∞}) = (A 

∪  B)c ∈  Σ. The restrictions feB = +∞ and feC = −∞ are constants and 

hence are, respectively, ΣeB-measurable and ΣeC-measurable. 

Proposition 6.3 implies that f is Σ-measurable and thus (ii) implies (i). 

Now assume (iii). Then  Σ and then 

f−1((a,+∞)) = f−1((a,+∞]) \ f−1({+∞}) ∈  Σ for all a ∈  R. Moreover, 

Σ. For all a ∈  R we get (feA)−1((a,+∞)) = 
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f−1((a,+∞)) ∈  ΣeA, because the last set belongs to Σ and is included in A. 

Proposition 6.5 implies that feA is ΣeA-measurable and (ii) is now 

proved. 

 

Proposition 6.8 Let (X,Σ) be measurable space and f : X → C. The 

following are equivalent. 

f is Σ-measurable. 

f−1(C) ∈  Σ and, if A = f−1(C) is non-empty, the feA : A → C is 

ΣeA-measurable. 

Proof: Assume (ii) and consider B = f−1({∞}) = (f−1(C))c ∈  Σ. The 

restriction feB is constant ∞ and hence ΣeB-measurable. Proposition 6.3 

implies that f is Σ-measurable. Thus (ii) implies (i). 

Now assume (i). Then A = f−1(C) ∈  Σ since C ∈  BC. Proposition 6.3 

implies that feA is ΣeA-measurable and (i) implies (ii). 

 

6.6 COMPOSITION. 
 

Proposition 6.9 Let (X,Σ), (Y,Σ0), (Z,Σ00) be measurable spaces and let f 

: X → Y , g : Y → Z. If f is (Σ,Σ0)-measurable and g is (Σ0,Σ00)-

measurable, then g ◦ f : X → Z is (Σ,Σ00)-measurable. 

Proof: For all E ∈  Σ00 we have (  Σ, because 

g−1(E) ∈  Σ0. 

Hence: composition of measurable functions is measurable. 

 

6.7 SUMS AND PRODUCTS. 
 

The next result is: sums and products of real or complex valued 

measurable functions are measurable functions. 

Proposition 6.10 Let (X,Σ) be a measurable space and f,g : X → R or C 

be Σ-measurable. Then f + g,fg are Σ-measurable. 

Proof: (a) We consider H : X → R2 by the formula H(x) = (f(x),g(x)) for 

all x ∈  X. Proposition 6.4 implies that H is (Σ,BR2)-measurable. Now 

consider φ,ψ : R2 → R by the formulas φ(y,z) = y+z and ψ(y,z) = yz. 
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These functions are continuous and Proposition 6.2 implies that they are 

(BR2,BR)-measurable. 

Therefore the compositions φ ◦ H,ψ ◦ H : X → R are Σ-measurable. But 

(φ◦H)(x) = f(x)+g(x) = (f +g)(x) and (ψ ◦H)(x) = f(x)g(x) = (fg)(x) for all x 

∈  X and we conclude that f +g = φ◦H and fg = ψ◦H are Σ-measurable. (b) 

In the case f,g : X → C we consider <(f),=(f),<(g),=(g) : X → R, which, 

by Proposition 6.6, are all Σ-measurable. Then, part (a) implies that 

<(f+g) = <(f) + <(g),=(f + g) = =(f) + =(g),<(fg) = <(f)<(g) − 

=(f)=(g),=(fg) = <(f)=(g) + =(f)<(g) are all Σ-measurable. Proposition 6.6 

again, gives that f + g,fg are Σ-measurable. 

If we want to extend the previous results to functions with infinite 

values, we must be more careful. 

The sums (+∞)+(−∞),(−∞)+(+∞) are not defined in R and neither is 

 

∞ + ∞ defined in C. Hence, when we add f,g : X → R or C, we must 

agree on how to treat the summation on, respectively, the set B = {x ∈  X 

|f(x) = +∞,g(x) = −∞ or f(x) = −∞,g(x) = +∞} or the set B = {x ∈  X |f(x) = 

∞,g(x) = ∞}. There are two standard ways to do this. One is to ignore the 

bad set and consider f +g defined on Bc ⊆ X, on which it is naturally 

defined. The other way is to choose some appropriate h defined on B and 

define f+g = h on B. The usual choice for h is some constant, e.g h = 0. 

 

Proposition 6.11 Let (X,Σ) be a measurable space and f,g : X → R be 

Σmeasurable. Then the set 

B = {x ∈  X |f(x) = +∞,g(x) = −∞ or f(x) = −∞,g(x) = +∞} 

belongs to Σ. 

 

The function f + g : Bc → R is ΣeBc-measurable. 

 

If h : B → R is ΣeB-measurable and we define 

 , if x ∈  Bc, 

( + g)( ) = 

 h(x), if x ∈  B, 
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then f + g : X → R is Σ-measurable. 

 

Similar results hold if f,g : X → C and B = {x ∈  X |f(x) = ∞,g(x) = ∞}. 

Proof: We have 

. 

Consider the sets A = {x ∈  X |f(x),g(x) ∈  R}, C1 = {x ∈  X |f(x) = +∞,g(x) 

6= −∞ or f(x) 6= −∞,g(x) = +∞} and C2 = {x ∈  X |f(x) = −∞,g(x) 6= +∞ 

or f(x) 6= +∞,g(x) = −∞}. It is clear that A,C1,C2 ∈  Σ, that Bc = A ∪  C1 ∪  

C2 and that the three sets are pairwise disjoint. 

The restriction of f + g on A is the sum of the real valued feA,geA. By 

Proposition 6.3, both feA,geA are ΣeA-measurable and, by Proposition 

6.10, (f+g)eA = feA+geA is ΣeA-measurable. The restriction (f+g)eC1 is 

constant +∞, and is thus ΣeC1-measurable. Also the restriction (f + g)eC2 

= −∞ is ΣeC2-measurable. Proposition 6.3 implies that f + g : Bc → R 

is ΣeBcmeasurable. 

This is immediate after the result of (i) and Proposition 6.3. 

 

The case f,g : X → C is similar, if not simpler. 

For multiplication we make the following 

 

Convention: (±∞) · 0 = 0 · (±∞) = 0 in R and ∞ · 0 = 0 · ∞ = 0 in C. 

Thus, multiplication is always defined and we may state that: the 

product of measurable functions is measurable. 

 

Proposition 6.12 Let (X,Σ) be a measurable space and f,g : X → R or C 

be Σ-measurable. Then the function fg is Σ-measurable. 

 

Proof: Let f,g : X → R. 

Consider the sets A = {x ∈  X |f(x),g(x) ∈  R}, C1 = {x ∈  X |f(x) = 

+∞,g(x) > 0 or f(x) = −∞,g(x) < 0 or f(x) > 0,g(x) = +∞ or f(x) < 

0,g(x) = −∞}, C2 = {x ∈  X |f(x) = −∞,g(x) > 0 or f(x) = +∞,g(x) < 0 or 

f(x) > 0,g(x) = −∞ or f(x) < 0,g(x) = +∞} and D = {x ∈  X |f(x) = ±∞,g(x) 
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= 0 or f(x) = 0,g(x) = ±∞}. These four sets are pairwise disjoint, their 

union is X and they all belong to Σ. 

The restriction of fg on A is equal to the product of the real valued 

feA,geA, which, by Propositions 6.3 and 6.10, is ΣeA-measurable. The 

restriction (fg)eC1 is constant +∞ and, hence, ΣeC1-measurable. 

Similarly, (fg)eC2 = −∞ is ΣeC2-measurable. Finally, (fg)eD = 0 is ΣeD-

measurable. 

Proposition 6.3 implies now that fg is Σ-measurable. 

 

If f,g : X → C, the proof is similar and slightly simpler. 

 

6.8 ABSOLUTE VALUE AND SIGNUM. 
 

The action of the absolute value on infinities is: | + ∞| = | − ∞| = +∞ and 

|∞| = +∞. 

 

Proposition 6.13 Let (X,Σ) be a measurable space and f : X → R or C be 

Σ-measurable. Then the function |f| : X → [0,+∞] is Σ-measurable. 

 

Proof: Let f : X → R. The function | · | : R → [0,+∞] is continuous and, 

hence, (BR,BR)-measurable. Therefore, |f|, the composition of | · | and f, is 

Σ-measurable. 

 

The same proof applies in the case f : X → C. 

 

Definition 6.3 For every z ∈  C we define 

, 

if z 6= 

0, if z = 

0, if z = 

∞. 

If we denote C∗  = C \ {0,∞}, then the restriction signeC∗  : C∗  → C is 
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continuous. This implies that, for every Borel set E in C, the set 

(signeC∗ )−1(E) is a Borel set contained in C∗ . The restriction signe{0} is 

constant 0 and the restriction signe{∞} is constant ∞. Therefore, for 

every Borel set E in C, the sets (signe{0})−1(E),(signe{∞})−1(E) are 

Borel sets. Altogether, sign−1(E) = 

(signeC∗ )−1(E)∪(signe{0})−1(E)∪(signe{∞})−1(E) is a Borel set in C. 

This 

 

means that sign : C → C is (BC,BC)-measurable. 

All this applies in the same way to the function sign : R → R with the 

simple formula 

(1, if 0 < x ≤ +∞, sign(x) = −1, if −∞ ≤ x < 0, 0, if x = 0. 

Hence sign : R → R is (BR,BR)-measurable. 

For all z ∈  C we may write 

z = sign(z) · |z| 

and this is called the polar decomposition of z. 

 

Proposition 6.14 Let (X,Σ) be a measurable space and f : X → R or C be 

Σ-measurable. Then the function sign(f) is Σ-measurable. 

 

Proof: If f : X → R, then sign(f) is the composition of sign : R → R and f 

and the result is clear by Proposition 6.9. The same applies if f : X → C. 

 

6.9 MAXIMUM AND MINIMUM. 
 

Proposition 6.15 Let (X,Σ) be measurable space and f1,...,fn : X → R be 

Σ-measurable. Then the functions max{f1,...,fn},min{f1,...,fn} : X → R are 

Σ-measurable. 

Proof: If h = max{f1,...,fn}, then for all a ∈  R we have h−1((a,+∞]) = 

 Σ. Proposition 6.7 implies that h is Σ-measurable and 

from min{f1,...,fn} = −max{−f1,...,−fn} we see that min{f1,...,fn} is also Σ-

measurable. 

The next result is about comparison of measurable functions. 
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Proposition 6.16 Let (X,Σ) be a measurable space and f,g : X → R be 

Σmeasurable. Then {x ∈  X |f(x) = g(x)},{x ∈  X |f(x) < g(x)} ∈  Σ. 

 

If f,g : X → C is Σ-measurable, then {x ∈  X |f(x) = g(x)} ∈  Σ. 

Proof: Consider the set A = {x ∈  X |f(x),g(x) ∈  R} ∈  Σ. Then the 

functions feA,geA are ΣeA-measurable and thus feA − geA is ΣeA-

measurable. Hence the sets {x ∈  A|f(x) = g(x)} = (feA − geA)−1({0}) and 

{x ∈  A|f(x) < g(x)} = (feA − geA)−1((−∞,0)) belong to ΣeA. This, of 

course, means that these sets belong to Σ (and that they are subsets of A). 

We can obviously write {x ∈  X |f(x) = g(x)} = {x ∈  A|f(x) = g(x)}∪  

 Σ. In 

a 

simil

ar 

manner, g−1((−∞,+∞]) ∪  f−1([−∞,+∞)) ∩ g−1({+∞}) ∈  Σ. 

 

The case of f,g : X → C and of {x ∈  X |f(x) = g(x)} is even simpler. 

 

6.10 TRUNCATION. 
 

There are many possible truncations of a function. 

 

Definition 6.4 Let f : X → R and consider α,β ∈  R with α ≤ β. We define 

f(x), if α ≤ f(x) ≤ β, if f(x) < α, 

 β, if β < f(x). 

We write f(β) instead of  and f(α) instead of . 

The functions  are called truncations of f. 

 

Proposition 6.17 Let (X,Σ) be a measurable space and f : X → R be a Σ-

measurable function. Then all truncations  are Σ-measurable. 

Proof: The proof is obvious after the formula . 
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An important role is played by the following special truncations. 

 

Definition 6.5 Let f : X → R. The f+ : X → [0,+∞] and f− : X → [0,+∞] 

define

d by 

the 

formulas 

,, 

 0, if f(x) < 0, −f(x), if f(x) < 0, 

are called, respectively, the positive part and the negative part of f. 

It is clear that f+ = f(0) and f− = −f(0). Hence if Σ is a σ-algebra of subsets of 

X and f is Σ-measurable, then both f+ and f− are Σ-measurable. It is also 

trivial to see that at every x ∈  X either f+(x) = 0 or f−(x) = 0 and that 

 f+ + f− = |f|, f+ − f− = f. 

There is another type of truncations used mainly for extended-

complex valued functions. 

 

Definition 6.6 Let f : X → R or C and consider r ∈  [0,+∞]. We define 

if |f(x)| ≤ r, 

( ) = 

 r · sign(f(x)), if r < |f(x)|. 

The functions (r)f are called truncations of f. 

Observe that, if f : X → R, then . 

 

Proposition 6.18 Let (X,Σ) be a measurable space and f : X → R or C a 

Σ-measurable function. Then all truncations (r)f are Σ-measurable. 

 

Proof: Observe that the function φr : R → R with formula 

, 

r 

 r · sign(x), if r < |x|, 

 

is continuous on R and hence (BR,BR)-measurable. 

Now (r)f = φr ◦ f is 
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Σ-measurable. 

 

The proof in the case f : X → C is similar. 

 

6.11 LIMITS. 
 

The next group of results is about various limiting operations on 

measurable functions. The rule is, roughly: the supremum, the infimum 

and the limit of a sequence of measurable functions are measurable 

functions. 

Proposition 6.19 Let (X,Σ) be a measurable space and (fj) a sequence of 

Σ- 

 

measurable functions fj : X → R. Then all the functions supj∈N fj, infj∈N fj, 

limsupj→+∞ fj and liminfj→+∞ fj are Σ-measurable. 

 

Proof: Let h = supj∈N fj : X → R. For every a ∈  R we have h−1((a,+∞]) = 

Σ. Proposition 6.7 implies that h is Σ-measurable. 

Now infj∈N fj = −supj∈N(−fj) is also Σ-measurable. 

And, finally, limsup  and liminfj→+∞ fj = 

 are Σ-measurable. 

Proposition 6.20 Let (X,Σ) be a measurable space and (fj) a sequence of 

 

Σ-measurable functions fj : X → R. Then the set 

 exists in R} 

belongs to Σ. 

 

The function limj→+∞ fj : A → R is ΣeA-measurable. 

 

If h : Ac → R is ΣeAc- measurable and we define 

 , if x ∈  A, 

  if x ∈  Ac, 
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then limj→+∞ fj : X → R is Σ-measurable. 

Similar results hold if fj : X → C for all j and we consider the set A = 

{x ∈  X | limj→+∞ fj(x) exists in C}. 

Proof: (a) Suppose that fj : X → R for all j. 

Proposition 6.19 implies that limsupj→+∞ fj and liminfj→+∞ fj are both Σ-

measurable. Since limj→+∞ fj(x) exists if and only if limsupj→+∞ fj(x) = 

liminfj→+∞ fj(x), we have that 

 

and Proposition 6.16 implies that A ∈  Σ. 

 

It is clear that the function limj→+∞ fj : A → R is just the restriction of 

limsupj→+∞ fj (or of liminfj→+∞ fj) to A and hence it is ΣeA-measurable. 

The proof of (ii) is a direct consequence of (i) and Proposition 6.3. 

Let now fj : X → C for all j. 

Consider the set B = {x ∈  X | limj→+∞ fj(x) exists in C} and the set C = 

{x ∈  X | limj→+∞ fj(x) = ∞}. Clearly, B ∪  C = A. 

Now, C = {x ∈  X | limj→+∞ |fj|(x) = +∞}. Since |fj| : X → R for all j, 

part (a) implies that the function limj→+∞ |fj| is measurable on the set on 

which it exists. Therefore, C ∈  Σ. 

B is the intersection of B1 = {x ∈  X | limj→+∞ <(fj)(x) exists in R} and 

B2 = {x ∈  X | limj→+∞ =(fj)(x) exists in R}. By part (a) applied to the 

sequences (<(fj)),(=(fj)) of real valued functions, we see that the two 

functions limj→+∞ <(fj),limj→+∞ =(fj) are both measurable on the set on 

which each of them exists. Hence, both B1,B2 (the inverse images of R 

under these functions) belong to Σ and thus B = B1 ∩ B2 ∈  Σ. Therefore A 

= B ∪  C ∈  Σ. 

We have just seen that the functions limj→+∞ <(fj),limj→+∞ =(fj) are 

measurable on the set where each of them exists and hence their 

restrictions to B are both ΣeB-measurable. These functions are, 

respectively, the real and the imaginary part of the restriction to B of 

limj→+∞ fj and Proposition 6.6 says that limj→+∞ fj is ΣeB-measurable. 
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Finally, the restriction to C of this limit is constant ∞ and thus it is ΣeC-

measurable. By Proposition 6.3, limj→+∞ fj is ΣeA-measurable. 

This is the proof of (i) in the case of complex valued functions and the 

proof of (ii) is immediate after Proposition 6.3. 

 

Finally, let fj : X → C for all j. 

For each j we consider the function 

, 

∞. 

If we set Aj = fj
−1(C) ∈  Σ, then gjeAj = fjeAj is ΣeAj-measurable. Also 

gjeAc
j is constant j and hence ΣeAc

j-measurable. Therefore gj : X → C is 

Σ-measurable. 

It is easy to show that the two limits limj→+∞ gj(x) and limj→+∞ fj(x) 

either both exist or both do not exist and, if they do exist, they are equal. 

In 

 

fact, let limj→+∞ fj(x) = p ∈  C. If p ∈  C, then for large enough j we shall 

have that fj(x) 6= ∞, implying gj(x) = fj(x) and thus limj→+∞ gj(x) = p. If p 

= ∞, then |fj(x)| → +∞. Therefore |gj(x)| ≥ min{|fj(x)|,j} → +∞ and hence 

limj→+∞ gj(x) = ∞ = p in this case also. The converse is similarly proved. 

If limj→+∞ gj(x) = p ∈  C, then, for large enough j, gj(x) 6= j and thus fj(x) 

= gj(x) implying limj→+∞ fj(x) = limj→+∞ gj(x) = p. If limj→+∞ gj(x) = ∞, 

then limj→+∞ |gj(x)| = +∞. Since |fj(x)| ≥ |gj(x)| we get limj→+∞ |fj(x)| = +∞ 

and thus limj→+∞ fj(x) = ∞. 

 

Therefore A = {x ∈  X | limj→+∞ gj(x) exists in C} and, applying the 

result of (b) to the functions gj : X → C, we get that A ∈  Σ. For the same 

reason, the function limj→+∞ fj, which on A is equal to limj→+∞ gj, is ΣeA-

measurable. 

 

6.12 SIMPLE FUNCTIONS. 
 

Definition 6.7 Let E ⊆ X. The function χE : X → R defined by 
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1, if x ∈  E, χE(x) = 

 0, if x /∈  E, 

is called the characteristic function of E. 

Observe that, not only E determines its χE, but also χE determines the set 

E by E = {x ∈  X |χE(x) = 1} = χ−
E

1({1}). 

The following are trivial: 

λχE+κχF = λχE\F +(λ+κ)χE∩F +κχF\E for all 

E,F ⊆ X and all λ,κ ∈  C. 

χEχF = χE∩F χEc = 1−χE 

Proposition 6.21 Let (X,Σ) be a measurable space and E ⊆ X. Then χE is 

Σ-measurable if and only if E ∈  Σ. 

Proof: If χE is Σ-measurable, then E = χ−
E

1({1}) ∈  Σ. 

Conversely, let E ∈  Σ. Then for an arbitrary F ∈  BR or BC we have 

χ−
E

1(F) = ∅  if 0,1 ∈ / F, χE
−1(F) = E if 1 ∈  F and 0 ∈ / F, χ−

E
1(F) = Ec if 1 

∈ / F and 0 ∈  F and χ−
E

1(F) = X if 0,1 ∈  F. In any case, χE
−1(F) ∈  Σ and 

χE is 

Σ-measurable. 

Definition 6.8 A function defined on a non-empty set X is called a simple 

function on X if its range is a finite subset of C. 

The following proposition completely describes the structure of 

simple functions. 

Proposition 6.22 (i) A function φ : X → C is a simple function on X if 

and only if it is a linear combination with complex coefficients of 

characteristic functions of subsets of X. 

(ii) For every simple function φ on X there are m ∈  N, different κ1,...,κm 

∈  C and non-empty pairwise disjoint E1,...,Em ⊆ X 

with  

φ = κ1χE1 + ··· + κmχEm. 

This representation of φ is unique (apart from rearrangement). (iii) If Σ 

is a σ-algebra of subsets of X, then φ is Σ-measurable if and only if all 

Ek’s in the representation of φ described in (ii) belong to Σ. 

Proof: Let , where λj ∈  C and Fj ⊆ X for all j = 1,...,n. 

Taking an arbitrary x ∈  X, either x belongs to no Fj, in which case φ(x) = 

0, or, by considering all the sets Fj1,...,Fjk which contain x, we have that 
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φ(x) = λj1 +···+λjk. Therefore the range of φ contains at most all the 

possible sums λj1 + ··· + λjk together with 0 and hence it is finite. Thus φ 

is simple on X. 

Conversely, suppose φ is simple on X and let its range consist of the 

different κ1,...,κm ∈  C. We consider Ej = {x ∈  X |φ(x) = κj} = φ−1({κj}). 

Then every x ∈  X belongs to exactly one of these sets, so that they are 

pairwise disjoint and X = E1 ∪  ··· ∪  Em. Now it is clear 

that , because both sides take the same value at every x. 

If  is another representation of φ with different κ0
i’s and 

nonempty pairwise disjoint Ei
0’s covering X, then the range of φ is 

exactly the set 

. Hence m0 = m and, after rearrangement, . 

Therefore Ej
0 = φ−1({κ0

j}) = φ−1({κj}) = Ej for all j = 1,...,m. We conclude 

that the representation is unique. 

Now if all Ej’s belong to the σ-algebra Σ, then, by Proposition 6.21, 

all χEj’s are Σ-measurable and hence φ is also Σ-measurable. Conversely, 

if φ is Σ-measurable, then all Ej = φ−1({κj}) belong to Σ. 

Definition 6.9 The unique representation of the simple function φ, which 

is described in part (ii) of Proposition 6.22, is called the standard 

representation of φ. 

If one of the coefficients in the standard representation of a simple 

function is equal to 0, then we usually omit the corresponding term from 

the sum (but then the union of the pairwise disjoint sets which appear in 

the representation is not, necessarily, equal to the whole space). 

Proposition 6.23 Any linear combination with complex coefficients of 

simple functions is a simple function and any product of simple functions 

is a simple function. Also, the maximum and the minimum of real valued 

simple functions are simple functions. 

Proof: Let φ,ψ be simple functions on X and p,q ∈  C. Assume that 

λ1,...,λn are the values of φ and κ1,...,κm are the values of ψ. It is obvious 

that the possible values of pφ + qψ are among the nm numbers pλi + qκj 

and that the possible values of φψ are among the nm numbers λiκj. 

Therefore both functions pφ + qψ,φψ have a finite number of values. If 
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φ,ψ are real valued, then the possible values of max{φ,ψ} and min{φ,ψ} 

are among the n+m numbers λi,κj. 

Theorem 6.1 (i) Given f : X → [0,+∞], there exists an increasing 

sequence (φn) of non-negative simple functions on X which converges to f 

pointwise on X. Moreover, it converges to f uniformly on every subset on 

which f is bounded. (ii) Given f : X → C, there is a sequence (φn) of 

simple functions on X which converges to f pointwise on X and so that 

(|φn|) is increasing. Moreover, (φn) converges to f uniformly on every 

subset on which f is bounded. 

If Σ is a σ-algebra of subsets of X and f is Σ-measurable, then the φn in 

(i) and (ii) can be taken to be Σ-measurable. 

Proof: (i) For every n,k ∈  N with 1 ≤ k ≤ 22n, we define the sets 

 

and the simple function 

. 

For each n the sets  are pairwise disjoint and their union 

is the set f−1((0,+∞]), while their complementary set is G = f−1({0}). 

Observe that if f is Σ-measurable then all  and Fn belong to Σ and 

hence φn is 

Σ-measurable. 

In G we have 0 = φn = f, in each  we have 

and in Fn we have φn = 2n < f. 

Now, if f(x) = +∞, then x ∈  Fn for every n and hence φn(x) = 2n → +∞ 

= f(x). If 0 ≤ f(x) < +∞, then for all large n we have 0 ≤ f(x) ≤ 2n and 

hence 0 , which implies that φn(x) → f(x). Therefore, φn 

→ f pointwise on X. 

If K ⊆ X and f is bounded on K, then there is an n0 so that f(x) ≤ 2n0 for 

all x ∈  K. Hence for all n ≥ n0 we have 0  for all x ∈  

K. 

This says that φn → f uniformly on K. 
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It remains to prove that (φn) is increasing. If x ∈  G, then φn(x) = 

φn+1(x) = f(x) = 0. Now observe the relations 

 , 1 ≤ k ≤ 22n, 

and 

. 

The first relation implies that, if  then  and φn+1(x) = 

 or . Therefore, if , then φn(x) ≤ φn+1(x). 

The second relation implies that, if x ∈  Fn, then φn(x) = 2n and φn+1(x) = 

 or ...or  or 2n+1. Hence, if x ∈  Fn, then φn(x) ≤ φn+1(x). 

(ii) Let A = f−1(C), whence f = ∞ on Ac. Consider the restriction feA : A 

→ C and the functions 

(<(feA))+,(<(feA))−,(=(feA))+,(=(feA))− : A → [0,+∞). 

If f is Σ-measurable, then A ∈  Σ and these four functions are ΣeA-

measurable. 

By the result of part (i) there are increasing sequences (pn), (qn), (rn) 

and (sn) of non-negative (real valued) simple functions on A so that each 

converges to, respectively, (<(feA))+, (<(feA))−, (=(feA))+ and (=(feA))− 

pointwise on A and uniformly on every subset of A on which feA is 

bounded (because on such a subset all four functions are also bounded). 

Now it is obvious that, if we set φn = (pn − qn) + i(rn − sn), then φn is a 

simple function on A which is ΣeA-measurable if f is Σ-measurable. It is 

clear that φn → feA pointwise on A and uniformly on every subset of A on 

which feA is bounded. 

Also |φn| = p(pn − qn)
2 + (rn − sn)

2 = ppn
2

 + qn
2 + rn

2 + s2
n and thus the 

sequence (|φn|) is increasing on A. 

If we define φn as the constant n on Ac, then the proof is complete. 

 

6.13 THE ROLE OF NULL SETS. 
 

Definition 6.10 Let (X,Σ,µ) be a measure space. We say that a property 

P(x) holds (µ-)almost everywhere on X or for (µ-)almost every x ∈  X, if 

the set {x ∈  X |P(x) is not true} is included in a (µ-)null set. 
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We also use the short expressions: P(x) holds (µ-)a.e. on X and P(x) 

holds for (µ-)a.e. x ∈  X. 

It is obvious that if P(x) holds for a.e. x ∈  X and µ is complete then 

the set {x ∈  X |P(x) is not true} is contained in Σ and hence its 

complement {x ∈  X |P(x) is true} is also in Σ. 

Proposition 6.24 Let (X,Σ,µ) be a measure space and (X,Σ,µ) be its 

completion. Let (Y,Σ0) be a measurable space and f : X → Y be (Σ,Σ0)-

measurable. 

 

If g : X → Y is equal to f a.e on X, then g is (Σ,Σ0)-measurable. 

Proof: There exists N ∈  Σ so that {x ∈  X |f(x) =6 g(x)} ⊆ N and µ(N) = 

0. 

Take an arbitrary E ∈  Σ0 and write g−1(E) = {x ∈  X |g(x) ∈  E} = {x ∈  

Nc |g(x) ∈  E}∪{x ∈  N |g(x) ∈  E} = {x ∈  Nc |f(x) ∈  E}∪{x ∈  N |g(x) ∈  

E}. 

The first set is = Nc ∩f−1(E) and belongs to Σ and the second set is ⊆ N. 

 

By the definiton of the completion we get that g−1(E) ∈  Σ and hence g is 

 

(Σ,Σ0)-measurable. 

In the particular case of a complete measure space (X,Σ,µ) we have 

the rule: if f is measurable on X and g is equal to f a.e. on X, then g is 

also measurable on X. 

Proposition 6.25 Let (X,Σ,µ) be a measure space and (X,Σ,µ) be its 

completion. Let (fj) be a sequence of Σ-measurable functions fj : X → R 

or C. If 

 

g : X → R or C is such that g(x) = limj→+∞ fj(x) for a.e. x ∈  X, then g is 

 

Σ-measurable. 

Proof: {x ∈  X | limj→+∞ fj(x) does not exist or is 6= g(x)} ⊆ N for some N 

∈  Σ with µ(N) = 0. 

Nc belongs to Σ and the restrictions fjeNc are all ΣeNc-measurable. By 

Proposition 6.20, the restriction geNc = limj→+∞ fjeNc is ΣeNc-measurable. 
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This, of course, means that for every E ∈  Σ0 we have {x ∈  Nc |g(x) ∈  E} 

∈  Σ. 

Now we write g−1(E) = {x ∈  Nc |g(x) ∈  E} ∪  {x ∈  N |g(x) ∈  E}. The 

 

first set belongs to Σ and the second is ⊆ N. Therefore g−1(E) ∈  Σ and g 

is 

 

Σ-measurable. 

Again, in the particular case of a complete measure space (X,Σ,µ) the 

rule is: if (fj) is a sequence of measurable functions on X and its limit is 

equal to g a.e. on X, then g is also measurable on X. 

Proposition 6.26 Let (X,Σ,µ) be a measure space and (X,Σ,µ) be its 

completion. Let (Y,Σ0) be a measurable space and f : A → Y be (ΣeA,Σ0)-

measurable, where A ∈  Σ with µ(Ac) = 0. If we extend f to X in an 

arbitrary manner, then 

 

the extended function is (Σ,Σ0)-measurable. 

Proof: Let h : Ac → Y be an arbitrary function and let 

. 

Take an arbitrary E ∈  Σ0 and write F−1(E) = {x ∈  A|f(x) ∈  E} ∪  {x ∈  

Ac |h(x) ∈  E} = f−1(E) ∪  {x ∈  Ac |h(x) ∈  E}. The first set belongs to ΣeA 

 

and hence to Σ, while the second set is ⊆ Ac. Therefore F−1(E) ∈  Σ and F 

is 

 

(Σ,Σ0)-measurable. 

If (X,Σ,µ) is a complete measure space, the rule is: if f is defined a.e. 

on X and it is measurable on its domain of definition, then any extension 

of f on X is measurable. 

 

Check your progress  
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Let (X,Σ) be a measurable space and f : X → R or C be measurable. We 

agree that 0p = +∞,(+∞)p = 0 if p < 0 and 00 = (+∞)0 = 1. Prove that, for 

all p ∈  R, the function |f|p is measurable. 

Prove that every monotone f : R → R is Borel measurable. 

Translates and dilates of functions. 

Let f : Rn → Y and take arbitrary y ∈  Rn and λ ∈  (0,+∞). We define g,h : 

Rn → Y by 

 

for all x ∈  Rn. g is called the translate of f by y and h is called the dilate 

of f by λ. 

Let (Y,Σ0) be a measurable space. Prove that, if f is (Ln,Σ
0)-measurable, 

then the same is true for g and h. 

Functions with prescribed level sets. 

Let (X,Σ) be a measurable space and assume that the collection {Eλ}λ∈R 

of subsets of X, which belong to Σ, has the properties: (i) Eλ ⊆ Eκ for all 

λ,κ with λ ≤ κ, 

∪ λ∈ REλ = X, ∩λ∈ REλ = ∅ , 

∩κ,κ>λEκ = Eλ for all λ ∈  R. 

Consider the function f : X → R defined by f(x) = inf{λ ∈  R|x ∈  Eλ}. 

Prove that f is measurable and that Eλ = {x ∈  X |f(x) ≤ λ} for every λ ∈  R. 

How will the result change if we drop any of the assumptions in (ii) and 

(iii)? 

Not all functions are Lebesgue measurable and not all Lebesgue measurable 

functions are Borel measurable. 

Prove that a Borel measurable g : R → R is also Lebesgue measurable. 

(ii) Find a function f : R → R which is not Lebesgue measurable. (iii) 

Using exercise 4.6.15, find a function g : R → R which is Lebesgue 

measurable but not Borel measurable. 

Give an example of a non-Lebesgue measurable f : R → R so that |f| is 

Lebesgue measurable. 

Starting with an appropriate non-Lebesgue measurable function, give 

anexample of an uncountable collection {fi}i∈ I of Lebesgue measurable 

functions fi : R → R so that supi∈ I fi is non-Lebesgue measurable. 
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(i) Prove that, if G : R → R is continuous and H : R → R is Borel 

measurable, then H ◦ G : R → R is Borel measurable. 

(ii) Using exercise 4.6.15, construct a continuous G : R → R and a 

Lebesgue measurable H : R → R so that H ◦G : R → R is not Lebesgue 

measurable. 

 

Let (X,Σ,µ) be a measure space and f : X → R or C be measurable. 

Assume that µ({x ∈  X ||f(x)| = +∞}) = 0 and that there is M < +∞ so that 

µ({x ∈  X ||f(x)| > M}) < +∞. 

 

6.14 LET US SUM UP  
 

In this unit we discussed the following  

Measurability 

Restriction and gluing 

Functions with arithmetical values. 

Composition 

Sums and products 

Absolute value and signum 

Maximum and minimum. 

Truncation 

Limits 

Simple functions 

The role of null sets 

 

6.15 KEYWORDS  
 

Measurable space -measurable space or Borel space is a basic object 

in measure theory. It consists of a set and a σ-algebra, which defines the 

subsets that will be measured. 

 

Truncate -Truncating is a method of approximating a decimal number 

by dropping all decimal places past a certain point without rounding. 

Example: 3.14159265 can be truncated to 3.1415. 
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6.18. ANSWERS TO CHECK YOUR 

PROGRESS  
 

     1. Check section 6.3-6.13 for answers 

 

http://www.math.hmc.edu/funfacts
https://arxiv.org/pdf/1411.7110.pdf
https://blogs.scientificamerican.com/roots-of-unity/a-few-of-my-favorite-spacesfat-cantor-sets/
https://blogs.scientificamerican.com/roots-of-unity/a-few-of-my-favorite-spacesfat-cantor-sets/
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UNIT 7 CANTOR TERNARY SET 
 

STRUCTURE 

 

7.1 Objective 

7.2 Introduction 

7.3 Ternary Representation Of A cantor Set. 

7.4 Cantor Function. 

7.5 The Devils Staircase 

7.6 Let us sumup  

7.7 Keywords  

7.8 Questions for review  

7.9 Suggested readings and references  

7.10 Answers to check your progress  

 

7.1 OBJECTIVE 
 

In this chapter we are going to learn about cantor ternary set and its 

functions. 

We will be learning about the devil’s staircase and seeing problems 

related to it 

 

7.2 INTRODUCTION. 
 

Georg Cantor (1845-1918) introduced the notion of the cantor set, which 

consists of points along a single line segment with a number of 

remarkable and deep properties. This paper aims to emphasize a 

proceeding to obtain the Cantor (ternary) set, C by means of the so-called 

elimination of the open-middle third at each step using a general basic 

approach in constructing the set. 

 

Since {x} is a degenerate interval, we see that mn({x}) = voln({x}) = 0. In 

fact, every countable subset of Rn has Lebesgue measure zero: if A = 

{x1,x2,...}, then  
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The aim of this section is to provide an uncountable set in R whose 

Lebesgue measure is zero. 

We start with the interval 

I0 = [0,1], 

then take 

next 

, 

and so on, each time dividing each of the intervals we get at the previous 

stage into three subintervals of equal length and keeping only the two 

closed subintervals on the sides. 

Therefore, we construct a decreasing sequence (In) of closed sets so 

that every In consists of 2n closed intervals all of which have the same 

length . We define 

 

and call it the Cantor set. 

C is a compact subset of [0,1] with m1(C) = 0. To see this observe that 

for every  which tends to 0 as n → +∞. 

We shall prove by contradiction that C is uncountable. Namely, 

assume that C = {x1,x2,...}. We shall describe an inductive process of 

picking one from the subintervals constituting each In. 

It is obvious that every xn belongs to In, since it belongs to C. At the 

first step choose the interval I(1) to be the subinterval of I1 which does not 

contain x1. Now, I(1) includes two subintervals of I2 and at the second step 

choose the interval I(2) to be whichever of these two subintervals of I(1) 

does not contain x2. (If both do not contain x2, just take the left one.) And 

continue inductively: if you have already chosen I(n−1) from the 

subintervals of In−1, then this includes two subintervals of In. Choose as 

I(n) whichever of these two subintervals of 

I(n−1) does not contain xn. (If both do not contain xn, just take the left one.) 

This produces a sequence (I(n)) of intervals with the following properties: 

(i) I(n) ⊆ In for all n, 

(ii) I(n) ⊆ I(n−1) for all n, 

(iii) vol 0 and 
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(iv) xn ∈ / I(n) for all n. 

From (ii) and (iii) we conclude that the intersection of all I(n)’s contains a 

single point: 

 

for some x0. From (i) we see that x0 ∈  In for all n and thus x0 ∈  C. 

Therefore, x0 = xn for some n ∈  N. But then x0 ∈  I(n) and, by (iv), the 

same point xn does not belong to I(n). 

We get a contradiction and, hence, C is uncountable. 

Another way to define cantor set; 

Step 0: we begin with the interval [0,1]. 

 

Step 1: we divide [0,1] into 3 subintervals and delete the open middle 

subinterval (  

 

Step 2: we divide each of the 2 resulting intervals above into 3 subintervals 

and delete the open middle subintervals ( and (  

 

We continue this procedure indefinitely. At each step, we delete the open 

middle third subinterval of each interval obtained in the previous step. 

 

Definition of Cantor’s Set 

 

 

 

Cantor’s set is the set C left after this procedure of deleting the open 

middle third subinterval is performed infinitely many times. 

 Is there anything left? 

Yes, at least the endpoints of the deleted middle third subintervals. 

 

There are countably many such points. 

Step 0 

Step 1 

Step 2 

Step 3 

Step  6 

Step  4 

Step  5 

0 1 • 9 2 • 9 7 • 9 8 • 9 1 1 / 3 2 / 3 

0 1 • 3 2 • 3 1 

0 1 
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 Are there any other points left? 

Yes, in some sense, a whole lot more. But in some other sense, just some 

dust - which in some ways is scattered, in some other ways it is bound 

together. 

We will describe different ways to”measure” the dust left. This will take 

us through several mathematical disciplines: set theory, measure theory, 

topology, geometric measure theory, real analysis. 

 

Some Properties of the Cantor Set 

1. The cantor set has no interval 

2. The cantor set is non-empty 

3. The cantor set is closed and nowhere dense 

4. The cantor set is compact 

5. The cantor set is perfect and totally disconnected 

6. The cantor set is uncountable  

7.3 TERNARY REPRESENTATION OF 

CANTOR’S SET 

 

 Every real number can be represented by an infinite sequence of digits: 

 

 golden ratio = 1.6180339887498948482045... 

 

This is the decimal (base 10) representation: 

 Numbers described using powers of 10 and 

 Digits used: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 

 Some numbers can be represented in two ways, with one 

representation having only 9’s from some point on.  Computers use the 

binary (base 2) representation: every number is described using powers 

of 2 and digits 0, 1. golden ratio = 1.100111100011011101111...(2) 

 

Ternary Representation of Cantor’s Set 
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We can represent real numbers in any base. We will use the 

 

ternary (base 3) representation, because Cantor’s set has a special 

representation in base 3. 

 

A number is in Cantor’s set if and only if its ternary representation 

contains only the digits 0 and 2 (in other words, it has no 1’s). 

C = {x ∈  [0,1]: x = 0.c1c2c3 ...cn ...(3) where cn = 0 or 

2} 

 

6.16 QUESTIONS FOR REVIEW  
 

Let (X,Σ) be a measurable space and f : X → R. Prove that f is measurable if 

f−1((a,+∞]) ∈  Σ for all rational a ∈  R. 

 

Let f : X → R. If g,h : X → R are such that g,h ≥ 0 and f = g − h on X, prove 

that f+ ≤ g and f− ≤ h on X. 

 

 

Prove that for every  > 0 there is a bounded measurable g : X → R or C 

so that . You may try a suitable truncation of f. 

We say that φ : X → C is an elementary function on X if it has countably 

many values. Is there a standard representation for an elementary 

function? 

Prove that for any f : X → [0,+∞), there is an increasing sequence (φn) of 

elementary functions on X so that φn → f uniformly on X. If Σ is a σ-

algebra of subsets of X and f is measurable, prove that the φn’s can be 

taken measurable. 
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We can add, multiply and take limits of equalities holding almost 

everywhere. 

Let (X,Σ,µ) be a measure space. 

Let f,g,h : X → Y . If f = g a.e. on X and g = h a.e. on X, then f = h a.e. on 

X. 

Let f1,f2,g1,g2 : X → R. If f1 = f2 a.e. on X and g1 = g2 a.e. on X, then f1 + g1 

= f2 + g2 and f1g1 = f2g2 a.e. on X. 

 

Let fj,gj : X → R so that fj = gj a.e. on X for all j ∈  N. Then supj∈N fj = 

supj∈N gj a.e. on X. Similar results hold for inf,limsup and liminf. 

 

Let fj,gj : X → R so that fj = gj a.e. on X for all j ∈  N. If A = {x ∈  

X | limj→+∞ fj(x) exists} and B = {x ∈  X | limj→+∞ gj(x) exists}, then 

A4B ⊆ N for some N ∈  Σ with µ(N) = 0 and limj→+∞ fj = limj→+∞ gj a.e. on 

A ∩ B. If, moreover, we extend both limj→+∞ fj and limj→+∞ gj by a 

common function h on (A∩B)c, then limj→+∞ fj = limj→+∞ gj a.e. on X. 

Let (X,Σ,µ) be a measure space and (X,Σ,µ) be its completion. 

 

If E ∈  Σ, then there is A ∈  Σ so that χE = χA a.e. on X. 

 

If φ : X → C is a Σ-measurable simple function, then there is a 

Σmeasurable simple function ψ : X → C so that φ = ψ a.e. on X. (iii) Use 

Theorem 6.1 to prove that, if g : X → R or C is Σ-measurable, then there 

is a Σ-measurable f : X → R or C so that g = f a.e. on X. 

Let X,Y be topological spaces of which Y is Hausdorff. This means that, 

if y1,y2 ∈  Y and y1 6= y2, then there are disjoint open neighborhoods 

Vy1,Vy2 of y1,y2, respectively. Assume that µ is a Borel measure on X so 

that µ(U) > 0 for every non-empty open U ⊆ X. Prove that, if f,g : X → Y 

are continuous and f = g a.e. on X, then f = g on X. 

The support of a function. 

Let X be a topological space and a continuous f : X → C. The set 

 

supp(f) = f−1(C \ {0}) is called the support of f. Prove that supp(f) is the 

smallest closed subset of X outside of which f = 0. 
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Let µ be a regular Borel measure on the topological space X and f : X → 

C be a Borel measurable function. A point x ∈  X is called a support 

point for f if µ({y ∈  Ux |f(y) 6= 0}) > 0 for every open neighborhood Ux 

of x. The set supp(f) = {x ∈  X |x is a support point for f} 

is called the support of f. 

Prove that supp(f) is a closed set in X. 

Prove that µ({x ∈  K |f(x) 6= 0}) = 0 for all compact sets K ⊆ 

(supp(f))c. 

Using the regularity of µ, prove that f = 0 a.e on (supp(f))c. (iv) Prove 

that (supp(f))c is the largest open set in X on which f = 0 a.e. 

(c) Assume that the µ appearing in (b) has the additional property that 

µ(U) > 0 for every open U ⊆ X. Use exercise 6.12.15 to prove that for 

any continuous f : X → C the two definitions of supp(f) (the one in (a) 

and the one in (b)) coincide. 

The Theorem of Lusin. 

We shall prove that every Lebesgue measurable function which is finite 

a.e. on Rn is equal to a continuous function except on a set of arbitrarily 

small Lebesgue measure. 

For each a < a+δ < b−δ < b we consider the function τa,b,δ : R → R 

which: is 0 outside (a,b), is 1 on [a+δ,b−δ] and is linear on [a,a+δ] and 

on [b−δ,b] so that it is continuous on R. Now, let R = (a1,b1)×···×(an,bn) 

and, for small enough δ > 0, we consider the function τR,δ : R
n → R by 

the formula 

τR,δ(x1,...,xn) = τa1,b1,δ(x1)···τan,bn,δ(xn). 

If Rδ = (a1 + δ,b1 − δ) × ··· × (an + δ,bn − δ), prove that τR,δ = 1 on 

 

Rδ, τR,δ = 0 outside R, 0 ≤ τR,δ ≤ 1 on Rn and τR,δ is continuous on Rn. 

Therefore, prove that for every  > 0 there is δ > 0 so that 

 { | 6 } . 

Let E ∈  Ln with mn(E) < +∞. Use Theorem 4.6 to prove that for every  > 

0 there is a continuous τ : Rn → R so that 0 ≤ τ ≤ 1 on Rn 

and . 

Let φ be a non-negative Lebesgue measurable simple function on Rn 

which is 0 outside some set of finite Lebesgue measure. Prove that for all  
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> 0 there is a continuous τ : Rn → R so that 0 ≤ τ ≤ maxRn φ on Rn 

and . 

Let f : Rn → [0,1] be a Lebesgue measurable function which is 0 outside 

some set of finite Lebesgue measure. Use Theorem 6.1 to prove that 

 uniformly on Rn, where all ψk are Lebesgue measurable 

simple functions with 0  on Rn for all k. Now apply the result of 

(iii) to each ψk and prove that for all  > 0 there is a continuous g : Rn → 

[0,1] so that . 

Let f : Rn → [0,+∞] be a Lebesgue measurable function which is 0 

outside some set of finite Lebesgue measure and finite a.e. on Rn. By 

taking an appropriate truncation of f prove that for all  > 0 there is a 

bounded Lebesgue measurable function h : Rn → [0,+∞] which is 0 

outside some set of finite Lebesgue measure so that mn({x ∈  Rn |h(x) 6= 

. Now apply the result of (iv) to find a continuous g : Rn → R 

so that . 

Find pairwise disjoint open-closed qubes P(k) so that  

and let R(k) be the open qube with the same edges as P(k). Consider for 

each k a small enough δk > 0 so that mn({x ∈  Rn |τR(k),δk(x) 6= 

. 

Let f : Rn → [0,+∞] be Lebesgue measurable and finite a.e. on Rn. If R(k) 

are the qubes from (vi), then each fχR(k) : Rn → [0,+∞] is Lebesgue 

measurable, finite a.e. on Rn and 0 outside R(k). Apply 

(v) to find continuous gk : R
n → R so that mn({x ∈  Rn |gk(x) 6= 

. 

Prove that . 

Define  and prove that g is continuous on Rn and that 

. 

 

Extend the result of (vii) to all f : Rn → R or C which are Lebesgue 

measurable and finite a.e. on Rn. 

Let f : Rn → R be continuous at mn-a.e. x ∈  Rn. Prove that f is Lebesgue 

measurable on Rn. 
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7.4 CANTOR’S FUNCTION 
 

The function defined earlier, f : C → [0,1] 

 c1 c2 c3 cn 

 f (0.c1c2c3 ...cn ...(3)) := 0. ... ...(2) 

 2 2 2 2 

has the following properties: 

It is onto. 

It is increasing 

It is not one to one. For instance: 

f f 

 

Two inputs of f have the same outputs if and only if they are 

the endpoints of an interval removed - like ( ) 

etc. 

 

 

BACK TO REAL ANALYSIS ; CANTOR’S FUNCTION 

Extend f to the whole interval [0,1] by making it constant on these 

removed intervals. 

The function obtained by this extension is called Cantor’s function. 

 

 Cantor’s function is onto. 

 Cantor’s function is increasing, but constant almost everywhere (except on 

the ”dust”). 

 Cantor’s function is continuous. 

 The derivative of Cantor’s function is 0 almost everywhere. 

Devil's  Staircase 

1 
9 2 

9 1 
3 2 

3 7 
9 8 

9 1 0 

1 
4 

1 
2 

3 
4 

1 
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7.5 THE DEVILS STAIRCASE. 

 

 

Cantor’s function, also called the Devil’s Staircase, makes a continuous 

finite ascent (from 0 to 1) in an infinite number of steps (there are 

infinitely many intervals removed) while staying constant most of the 

time. 

 

Check your progress  

1. Prove that the Cantor set C constructed in the text is totally 

disconnected and perfect. In other words, given two distinct points x, y ∈  

C, there is a point z /∈  C that lies in between x and y, and yet C has no 

isolated points. [Hint: If x, y ∈  C and |x − y| > 1/3 k , then x and y belong 

to two different intervals in Ck. Also, given any x ∈  C there is an end-

point yk of some interval in Ck that satisfies x 6= yk and |x − yk| ≤ 1/3 k 

.]  

7.6 LET US SUM UP  

In this unit we discussed the following  

Ternary Representation Of A cantor Set. 

Cantor Function. 

The Devils Staircase 

1 
9 2 

9 1 
3 2 

3 7 
9 8 

9 1 0 

1 
4 

1 
2 

3 
4 

1 
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7.7 KEYWORDS  

 Cantor Set-The Cantor set is set of points lying on a line 

segment. 

 

7.8 QUESTIONS FOR REVIEW  

 

2.  The Cantor set C can also be described in terms of ternary 

expansions. (a) Every number in [0, 1] has a ternary expansion x = ∑∞ 

k=1 ak3 −k , where ak = 0,1 or 2. Note that this decomposition is not 

unique since, for example, 1/3 = ∑∞ k=2 2/3 k . Prove that x ∈  C if and 

only if x has a representation as above where every ak is either 0 or 2. 

 

3.Suppose E is a given set, and On is the open set On = {x ∈  R d : d(x, 

E) < 1/n}. 

 Show: (a) If E is compact, then m(E) = limn→∞ m(On). 

(b) However, the conclusion in (a) may be false for E closed and 

unbounded; or E open and bounded. 

 

Let A be the subset of [0, 1] which consists of all numbers which do not 

have the digit 4 appearing in their decimal expansion. Find m(A). 

 

 The following deals with Gδ and Fσ sets. (a) Show that a closed set is a 

Gδ and an open set an Fσ. [Hint: If F is closed, consider On = {x : d(x, F) 

< 1/n}.] 

 

7.9 SUGGESTED READINGS AND 

REFERENCES  

 

Fundamentals of Real Analysis, S K. Berberian, Springer. 

/wiki/sets/
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An introduction to measure theory Terence Tao 

Measure Theory Authors: Bogachev, Vladimir I 

 Chovanec Ferdinand. Cantor sets. Sci. Military J. 2010 

Christopher Shaver. An exploration of the cantor set. Rose-Hulman 

Undergraduate Mathematics Journal. 

Dauben Joseph Warren, Corinthians I. Georg cantor: The battle for 

transfinite set theory. American Mathematical Society. 

 Su Francis E, et al. Devil’s staircase. Math Fun Facts. 

 

7.10 ANSWERS TO CHECK YOUR 

PROGRESS  

 

1.Please check section 7.3-7.5  

 

 

 


